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Abstract

When a requirement or specification is not correctly implemented it generate er-

rors, these errors are referred as software bugs or software issues. In order to fix

the issue or bug it is reported to the concerned developer or software Development

Company. The process of reporting a software bug to its concerned developer is

called bug classification and triaging, software bug can have significant impact on

the overall functionality of the software system. Software bug fixing and resolution

is an important activity in the software development process, and it consume huge

amount of resources in terms of cost and time. Normally software bug passes from

different stages (i.e. open, close, resolved and re-opened), once it is reported to

the developer. In order to keep track of the bug fixing and resolution process,

bug tracking repositories are used to classify and categorize software bug reports

into different classes and categories. In order to effectively classify and triage soft-

ware issues various approaches and techniques have been proposed by researchers.

To classify software bug reports into different classes, textual and categorical at-

tributes of the bug reports is used to extract features and then machine learning

algorithms are applied on it. In the existing literature most of the approaches

focused more on textual attributes of the bug as compared to the categorical at-

tributes. However, categorical attributes are an important part of issue reports

and can enhance the issue reports classification process more effective and fruitful.

Moreover, an important issue is the selection of classes for classifying software bug

reports.

In this work, we perform an analysis of software bug reports attributes, number

of classes and classification algorithms for classifying software issue reports into

different classes and categories. We use categorical and textual attributes of is-

sue reports obtained from two different bug reports datasets and apply machine

learning algorithms for classification. Textual attributes (i.e. bug title, bug sum-

mary and description) and categorical attributes (i.e. product, platform, severity,

priority, and version) are extracted from the software issue reports. We perform ex-

periments to evaluate the performance of textual and categorical attributes of bug



viii

reports. Furthermore, the performance of six machine learning algorithms is com-

pared that has been used in this work. Moreover, we also assessed the performance

of different issue report attributes by applying wrapper techniques to determine

the subset of features having better classification performance and accuracy. Our

obtained results depicts that by using textual and categorical attributes of issue

reports combined significantly enhances and improves the classification results for

binary and as well as for multi class classification. In case of machine learning

algorithms performance support vector machine, näıve Bayes, Decision tree yields

better results as compared to the rest of algorithms that has been employed in

this research work.



Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgement vi

Abstract vii

List of Figures xii

List of Tables xiii

Abbreviations xiv

1 Introduction 1

1.1 Background Knowledge and Motivation . . . . . . . . . . . . . . . 4

1.1.1 Bugs Tracking System (BTS) . . . . . . . . . . . . . . . . . 6

1.1.2 Open Source Software Bugs Repositories . . . . . . . . . . . 7

1.1.3 Management of Software Bugs . . . . . . . . . . . . . . . . . 8

1.1.4 Software Bugs Classification . . . . . . . . . . . . . . . . . 8

1.1.5 Motivation Behind Software Bugs Classification . . . . . . . 9

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Organization of This Thesis Work . . . . . . . . . . . . . . . . . . 14

2 Literature Review 15

2.1 Software Bugs Classification Approaches . . . . . . . . . . . . . . . 16

2.2 Summary and Gap Analysis of the Literature Review . . . . . . . . 28

3 Proposed Approach 30

3.1 Selection of Bug Reports Dataset . . . . . . . . . . . . . . . . . . . 30

3.2 Dataset Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Feature Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



x

3.4 Selection of Bug Attributes . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Feature Selection Method . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Feature Selection Method for Evaluating the Effectiveness of Bug
Reports Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Classes Selection for Classification . . . . . . . . . . . . . . . . . . 36

3.8 Conversion of Classes into Binary and Multiclass . . . . . . . . . . 37

3.9 Selection Method of ML Learning Algorithms . . . . . . . . . . . . 39

3.10 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . 40

3.10.1 Support Vector Machine (SVM) . . . . . . . . . . . . . . . . 40
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Chapter 1

Introduction

In software development and engineering domain when a requirement or specifi-

cation is implemented incorrectly, it generates errors. Normally these errors are

referred as software bugs. In software development terminologies these errors are

also known as issues, tickets, and defects. Bugs or issues can have high impact on

the overall performance of the underline software system in which bug emerges [1].

Normally when a bug occurs in a program, it is reported to development teams

of the software company which have developed that particular software applica-

tion. Bugs tracking system is used to keep track of reported bugs filed against a

particular software product [2]. Bugs tracking system (BTS) provides a thorough

approach for managing the reported bugs which contains several information re-

lated to a particular bug. In short, bugs tracking system (BTS) keeps track of

software bugs from the start to the end of the bug life cycle.

Normally bug or error occurs in software application due to various reasons such

as developer mistakes, tools, and development or operational environment issues

[3]. When a problem occurs due to the environment where particular software is

running, normally it is not considered as a software bug. However, when a bug

occurs within the software application then it is considered as potential bug. Once

a software bug emerges (i.e. logical, design etc.), the first step in the resolution

or fixing process of the bug is to report it to the appropriate developer or devel-

opment team. Once the bug is reported the testing team or developer assess the

1
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reported bug using different information present in the issue report and assigns it

to developer for fixing. This assignment and allocation process of software bugs

to appropriate developers is called bug classification [4][5][6].

Currently most of the software development organizations use various types of

bug tracking systems in order to facilitate the speedy and efficient resolution of

reported software bugs. Software companies that develops closed source (i.e. soft-

ware’s which does not allow public access to its source code) software applications

have their own Bug tracking systems (BTS) which is designed and implemented

according to their needs, on the other hand Open-source software development

projects maintain their own bug tracking systems and bug reports repositories.

For instance, Bugzilla [7], mantis BT [7], [8] and Google chromium [9] are open

source bug tracking repositories used by different open source projects like Mozilla

and eclipse.

Bug classification process consumes huge amount of resources (i.e. time and cost)

of development teams. Furthermore, manual classification of bug reports is not

feasible due to high number of reported bugs on daily basis. Hence, manual

classification process of reported software bugs issues is neither a standard nor a

feasible practice to be used on regular basis in large and complex development

environments [10].

arious techniques have been proposed in the literature that uses bug report ti-

tle description and summary for classification purposes[11][12][13][14][15][16][17].

However, bug report contains both the textual and categorical fields that provide

variety of information about a particular bug. Fewer techniques in the existing

literature incorporate both the textual and categorical attributes for bug’s classifi-

cation. Furthermore, bugs can be classified or triaged using three main techniques,

i.e. (a) machine learning, (b) dictionary and information retrieval based and (c)

metadata based approaches. however, machine learning techniques tends to be

more productive and effective in term of better classification results as compared

to the dictionary and metadata based approaches. in machine learning approaches

initially bug reports are retrieved from bugs tracking systems (BTS), then natural

language processing techniques are applied on the bug reports for preprocessing,
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once the datasets becomes clean then feature extraction is performed on the basis

of which the machine learning model is trained and tested.

Existing techniques for bug classification suffers due to several limitations such as

varying performance on different bug datasets, less use of the categorical attributes

of the bug reports, low performance in terms of classification accuracy. Fewer

numbers of classes for classifying software bugs into different categories, which

result in better accuracy, but their results are less fruitful and cannot be relied

upon for accurately classifying software bugs. Furthermore, to the best of our

knowledge no existing technique have performed any evaluation of different issue

report attributes such as title, summary, severity and priority for determining their

effectiveness in classification process.

In this work we perform an analysis and identification of effective software bug

reports attributes, number of classes for classification and machine learning algo-

rithms that can be used for assigning software bugs reports to relevant bug classes.

The basic intuition behind our approach is to analyze bug classification process

based on machine learning algorithm that can classify software bugs into differ-

ent classes and categories with effectiveness. We use both categorical and textual

attribute of bug reports, i.e. bug title description, long summary is selected from

the textual part of the bug report, while attributes like product name, compo-

nent, version, severity and priority selected from the categorical part of the bug

reports. Furthermore, we use varying number of classes for classification with an

aim to determine suitable number of classes that can yield better performance and

results. Software bugs are classified into five different classes; these classes are ac-

tual bugs, non-bugs, logical bugs, enhancement bugs and graphical user interface

bugs. We also applies wrapping technique for determining the subset of features

from both categorical and textual attributes that yields better classification results

as compared to the set of all features that we use in this work.

We use six machine learning algorithms as classifiers for experimentation; these

algorithms are (a) support vector machine (b) näıve Bayes, (c) KNN, (d) Gaussian

Bayes , (e) Decision tree, and (f) Random forest . The obtained results of these

machine learning algorithms performance is compared against each other as well
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existing state of the art approaches in the literatures. Furthermore, to effectively

evaluate the performance of our proposed technique we use four different perfor-

mance evaluation measures which are accuracy, precision, F-measure, and Recall.

Moreover, we have compared our proposed technique with existing state of the art

bug classification frameworks.

1.1 Background Knowledge and Motivation

In software systems and engineering domain when computer program or software

based system produce/generates an unexpected result, tis unexpected result is

referred to as software bug. A software bug can be the result of wrong implemen-

tation of the specified requirements of software or due to the environment where

that particular software is used. Software bugs can be detected during the testing

phase of the development process; however, bugs can also occur in software sys-

tems during operations due to various reasons. Once a bug occurs in a computer

program that bug is reported to the concerned development organization. nor-

mally, developers, software test engineers, end users reports that particular bug to

concerned people in order to resolve and fix it [1][2].

A software bug report contains different types of information related to a certain

bug. Bug report consists of textual and categorical attributes that depicts different

information about the nature bug. Bug report consists of textual and categorical

attributes that depicts different information about a bug. The textual part of the

software bugs contains the title description and detailed summary in the form of

free text. While the categorical part consists of numerical and ordinal information,

such as big ID, product, version, component name , reporter name, bug type,

priority and many more details. Bug reports of specialized software applications

such as telecom software’s, embedded system and industrial automation system

contains alarms and crash dumps, due to the involvement of hardware components

as well, however, only 5.2% bug reports contains alarms and crash dumps data.

Figure 1.1 shows an overview diagram of a bug reports in the open source bugs

repository [18]. Software bugs reports are quite similar in nature in terms of their
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reporting techniques. For example, most of the bugs tracking system contain both

textual and categorical information related to a particular software bug.

Normally software bugs/issues can be categorized or differentiated from each other

using the predefine software bugs taxonomies. The following are the taxonomic

categorization of the bugs [19].

1. A reported software bug/issue can be either actual bug or non-bug. Actual

bug means that an abnormal activity or behavior in the program that con-

tradicts specification, while non-bugs refer to a reported software bugs issue

that is the result of the host environment where the software is used or the

reporter have wrongly reported the issue.

2. Actual bugs can be further classified into different types depending on their

occurrences in the software product. Normally actual bugs can be classified

into two categories, that logical bugs or backend bugs, logical bugs refers

to bugs which represent the programming errors in the software, while the

backend bugs refers to the environmental errors or bugs where the software

is used or developed.

3. Logical bugs can be further classified into graphical user interface (GUI)

bugs and non GUI bugs. GUI bugs refers to errors and issues in the user

interfaces of software system, while non GUI bugs refers to issues in other

than GUI component or modules of software system.

Figure 1.1: Bug report in the Mentis BT bug tracking system
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Figure 1.2: Software bug taxonomy

4. Non GUI bugs can further be divided into different types of bugs, such as

data types, platform, Operating system and product related bugs.

5. Non bug issues refer to bugs or other than actual bugs, such as the imple-

mentation problems, integration and improvement or enhancement related

problems.

Enhancement related issues may or may not be resolved logically. Actual bugs and

problems are resolved programmatically and logically. In the software development

paradigm enhancement related issues are not considered as bugs or defects, but

it is classified as a further improvement issues. Normally enhancement related

software issues have less priority in the bug’s resolution process as compared to

other bugs and issues. Figure 1.2 depicts software bugs taxonomy diagram of

diverse bugs and their related classes.

1.1.1 Bugs Tracking System (BTS)

Bugs tracking systems commonly referred as BTS. Bug tracking system is a repos-

itory that maintains records of different software bugs reported by users or devel-

opers/test engineers against a particular software system. Bug tracking systems is

considered an essential part of any software development environment. Both the

closed source and large industrial software projects as well open-source software
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projects maintains their own respective bug tracking systems in order to make the

process of bug assignment, classification and resolution easy, automated and effec-

tive. BTS is used to supervise management and tracking of reported bugs in the

software development environment. Bugs tracking system offer variety of features

to software test engineers and end users in order to reports bugs. For example, BTS

offers facility for reporting new bug, retrieving and accessing information related

to bugs, updating a specific bug report. Moreover, Bug tracking system plays an

essential and important role in software issues management process. Bugzilla [7],

Jira [20], Mentis BT [8] and Google Chromium [9] are some of mostly widely used

and established bugs tracking systems available for open-source software projects.

1.1.2 Open Source Software Bugs Repositories

In recent years open source software development has grown with rapid face. Cur-

rently different open source projects are running in software development arena.

Open source software development offer facility to their respective communities

and members to contribute in the development of these software projects. Most of

the open source projects maintain their own bugs and issue tracking repositories

in order to facilitate software issues reporting process more convenient for users

and software developers who contributes to these projects. Open source software

development offer facility to their respective communities and members to con-

tribute in the development of these software projects. Most of the open source

projects maintain their own bugs and issue tracking repositories in order to fa-

cilitate software issues reporting process more convenient for users and software

developers who contributes to these projects.The following are some of the most

widely used and well established software bugs tracking database.

1. Bugzilla

2. Mentis BT

3. Jboss
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1.1.3 Management of Software Bugs

The process of handling and maintaining software issues is called software bug

management process. Issue or bug management process consists of different activ-

ities such as bug prevention, bug identification, classification of software bug/issue

into different classes and categories, storing and maintaining record of reported

bugs. Bugs can occur in any software system, and resolving these bugs requires

huge amount of resource, hence, bug management is considered an important and

fundamental activity in software development process.

1.1.4 Software Bugs Classification

Software bugs classification is one of the most important activities in bug manage-

ment process. Bugs classification deals with grouping or assigning software bugs

into different classes. Classification has several benefits, variety of patterns and

useful data can be obtained by classifying software bugs into different classes. For

instance, identifying frequently occurring bugs, category or module of the software

system that have high number of reported bugs and nature of a reported software

bug. The classification data of software bugs reports can be used to enhance and

improve the software development process and to facilitate the development of new

software development techniques that can reduce the number of software bugs.

Furthermore, Classification of software bug reports becomes necessary due to the

huge number of new bugs reported on daily basis. According to statistics round

about 100-150 new bugs are filed on daily basis in Bugzilla bug tracking system.

Processing and assigning newly reported bugs to appropriate software develop-

ment teams and developers require sufficient efforts and resources. Hence, due to

the exponential number of bug reports in software development process the clas-

sification of bugs becomes a necessary task. Moreover, classification of software

bug reports has several advantages, such as efficient management of development

teams and resources, economical and cost effectiveness and ease in the identifica-

tion of erroneous modules and components of software. Furthermore, classification

of bugs significantly contributes in the quick and timely fixing of reported issues.
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Bugs classification significantly reduces the efforts and cost required for bug fixing

and resolution.

There are different applications of software bug’s classification in the software

development domain, such as (a) classification provides an easy way to identify

and determine developers for a particular class of bugs, for example, using bug’s

classification we can determine developer that are good and have the technical

background for resolving a GUI or Platform related bugs. (b) The second most

clear and obvious benefit of classification is that newly reported can be easily

assigned to the respective development teams or single developer based on the

category of the reported bug. This will lead to quick and efficient resolution of

software bug. (c) Classification of bugs helps software team leaders and mangers

to perform complex and extensive data analysis task on the classified bugs in

order to extract meaningful information about different aspect related to software

development process.

Due to the above discussed importance of software bugs classification, various clas-

sification techniques and approaches have been proposed by researchers for clas-

sifying software bugs into different categories and classes. Most of the software

bugs classification techniques uses machine learning algorithms for classification

of the bug’s reports into different classes and categories. However, the existing

approaches suffers due to various limitations such as less use of the categorical

attributes of bug reports, furthermore, the existing approaches have several lim-

itations in terms of performance and accuracy and limited number of classes for

classification. Moreover, very limited techniques have discussed the use of suitable

number of classes to classify software bugs.

1.1.5 Motivation Behind Software Bugs Classification

The basic intuition behind the classification of reported software bugs is three

folded, which is discussed in the following paragraph.
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1. Bugs can occur in any software system either in the development process

or in operations, timely fixing and resolution of bugs is a necessary task in

any software development environment. Normally software bugs resolution

process consumes huge amount of resources in terms of development cost

and developer’s time, classifying software bugs into relevant and appropriate

classes can help in timely and effective resolution of software tickets.

2. Another motivation behind the automated and accurate software bugs classi-

fication is that automatic and accurate classification of bugs can significantly

reduce developer’s engagement; hence, it will help to allocate the free devel-

oper resources to other task instead of doing manual classification.

3. Software bugs reports contains both textual and categorical attributes, these

attributes plays an important role in classification, hence, finding the most

effective and suitable attributes from both the textual and categorical cate-

gories is very important and primary task in the classification process.

1.2 Problem Statement

Various approaches and techniques have been proposed in the literature to auto-

mate software bug’s report classification process; however, most of the existing

techniques suffer due to various limitations.

• Very few existing techniques have used both the textual (i.e. title, sum-

mary and Bug description) and categorical attributes (i.e. product, version,

platform, component, priority and severity etc.) of bugs reports.

• In the literature very few approaches have focused on the selection of different

Bug reports attributes in order to determine their effectiveness. Another

issue is the selection of classes for classification. Various approaches have

used the number of classes between two to five. For example in [21][22][23]

the authors classified Bug reports into two main classes (i.e. corrective and

perfective) and Bugs and non- Bugs classes. The use of less number of classes
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for classification can yield better performance; however, these results are less

fruitful.

• The above discussed issues make the regular use of existing bugs triaging and

classification techniques more challenging and complex in large industrial and

open source software development environments.

1.3 Research Questions

We have formulated the following research questions which will be answered in

this research work.

• RQ1:what is impact of using only textual attributes and using the combi-

nation of both textual and categorical attributes on bug’s classification?

To answer research question 1 we have analyzed the impact and behavior of

both the textual and categorical attributes of the bug reports for classifica-

tion. We will experiment with both textual and categorical attributes and

will analyze their impact and significance in bug’s classification process.

• RQ2: what is the impact on classification performance by increasing the

number of classes from binary to multiclass classification?

The proper and suitable selection of classes for classification of software

bugs is a challenging and critical task; we will use varying number of classes

in order to determine the accurate number of classes that can be used for

classification.

• RQ3: what is the impact of machine learning algorithms in the classifica-

tion process? In the existing literature we found that most approaches uses

similar algorithms for classification, in order to assess the performance of Ma-

chine learning algorithms we will used different machine learning algorithm

for classification.

• RQ4: what are the most effective textual and categorical attributes of soft-

ware issue reports that can yield better classification results? In order to
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answer research question five, we use different subsets of textual and cate-

gorical attributes of reports in order to determine the best subset from our

selected attributes that yields better classification results.

1.4 Objectives

The following are the main objectives of this work

1. The first objective of this research work is determine the impact of textual

and categorical bug reports attributes in the classification process

2. The second objective is to investigate the impact of selecting varying number

of classes for classification

1.5 Scope

The scope of this research work is only limited to the classification of open-source

and publicly available software bug reports, furthermore, we do not consider bug

reports from closed source software development projects. Moreover, this research

considers only machine learning algorithms and classification techniques for clas-

sifying software bug reports.

1.6 Research Methodology

In the following steps we explain the research methodology for carrying out this

research work.

1. In the initial step, we conducted literature review of most relevant approaches

proposed for software bug classificatio process. After detailed analysis of
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published literature we conclude that most of the existing classification tech-

niques have several limitations. For example, few approaches have consid-

ered both the categorical and textual attributes of bug reports, categorical

attributes are essential part of bug reports and can have an impact on the

classification of bug reports, furthermore, we observed from the literature

review that selection of suitable number of classes for classification is an

important and crucial task, however, very few approaches have investigated

this direction. Another limitation that we concluded from the literature re-

view is that most of the existing approaches uses similar machine learning

algorithm for classification purposes.

2. In order to cover the gap in the existing literature we have performed two

main tasks, first to evaluate the effectiveness of textual and categorical at-

tributes for classification. Secondly we perform experiments using different

combination of textual and categorical attributes of software issues reports.

3. The implementation of our proposed work is discussed in the following steps;

• In the first step we will obtain software bug reports datasets from widely

used bug tracking systems, such as Bugzilla, Google chromium and

Eclipse, and mentis BT.

• In the second step preprocessing of bug reports dataset will perform. In

the preprocessing of bug reports consists of different steps, it will start

from sentence level segmentation of bug reports, then stop word removal

will be applied, followed by lemmatization and feature extraction and

feature selection processes.

• In the next step we will extract both the categorical and textual at-

tributes of the software bug reports, for instance, bug title and sum-

mary of the bug from bug report as well as categorical attributes like

product, component, version, bug type, priority and severity of reported

bug.

• Once these attributes are extracted from the bug reports we will extract

a feature set that will be used for mapping bugs reports into different

classes and categories using TF-IDF and information gain.
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• Once these attributes are extracted from the bug reports we will extract

a feature set that will be used for mapping bugs reports into different

classes and categories using TF-IDF.

• In fifth step we apply machine learning algorithm for classifying software

bug reports into different classes and categories.

4. We use varying number of classes for the classification of software bugs, for

instance, the label of classes are actual bugs and non-bugs, logical bugs, GUI

bugs, and enhancement issues.

5. In the last step obtained classification results using machine learning al-

gorithms are analyzed and evaluated using four evaluation measures, i.e.

accuracy, Precision, Recall and F-measure.

1.7 Organization of This Thesis Work

The rest of this thesis document is structured as follows, chapter 2 surveys existing

software bug reports classification approaches as well as summary and gap analysis

in the existing literature. Chapter 3 presents our methodology for bug reports

classification using machine learning classification algorithms. Chapter 4 discusses

the implementation of our proposed approach followed by results and their details

analysis and discussion. Chapter 5 concludes this thesis document with conclusion

and future work.



Chapter 2

Literature Review

Software bugs can have high impact on the overall performance of software ap-

plications. Most of the software development uses variety of bug tracking system

(BTS) for bug records. In order to locate and remove the bugs from software that

is either in development process or already in operations, a process known as bugs

triaging and classification is used. Bug triaging is process used to identify and clas-

sify software bugs into different categories. Normally software bugs are classified

using their severity, summary and description part of the bug reports. In order

to effectively monitor software bugs repositories both in open source and closed

source software projects. Variety of bugs tracking and classification techniques are

used. In the literature several techniques have been proposed for bug triaging and

classification, some approaches use machine learning algorithms, natural language

processing while other use information retrieval based techniques.

In this chapter we present related work that has been published in the area of

software bugs classification and triaging. We conduct a survey of the existing

approaches to find gap and limitations in the proposed techniques. Different chal-

lenges and problems have been extensively discussed in the existing literature by

many researchers. One of the most complex and challenging task is the selection

of a suitable number of classes for classification, as well the selection of textual

15
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and categorical attributes from the bug reports. In this Literature review we ex-

amine and investigate different techniques proposed for software bugs triaging and

classifications.

2.1 Software Bugs Classification Approaches

Davor and Murphy 2004 presented a novel approach for triaging software bugs

into different classes. The technique is based on multiclass classification that uses

näıve Bayes classifiers to classify bugs into their respective classes [24]. In order to

correctly classify the bug nature and then to assign it to the appropriate software

developer, it requires bug description and developer history. To make the bug

assignment process more reliable and effective verity of features are extracted from

the description or summary of the bug reports. Näıve Bayes algorithm achieves

better results on the Mozilla bug reports dataset for assigning the reported bugs

to correct developers.

Anvik 2006 a semi-automated approach for bug triaging has been proposed by

Anvik [25]. The basic intuition behind the approach is to develop a recommenda-

tion system that assists bug triagers to assign the appropriate bugs to respective

developers. The recommendation system takes the textual description of the bug

report in order to develop a model for different software developers that works

in a project. The model assigns the bugs to different fixers based on the history

of the previous resolved bugs by a single developer. The system takes different

information related to bugs presented in bug report, such as bug component, oper-

ating system, hardware, version of the software and many more details. Machine

learning algorithms have been used to evaluate the proposed approach.

Menzies and Marcus 2008 applied an automatic approach for predicting de-

fects and bugs severity classification in the NASA dataset of bug’s reports [26].

The prediction mechanism was based on the notion of multiclass classification

containing four different severity classes that are critical, major, minor and trivial

class. Experiments were performed on the NASA PITS dataset. However, the

dataset is very small and was unable to exploit completely the approach. Due to
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the small number of training set, the approach achieved varying results in terms

of precision and recall.

Anvik et al., 2009 a novel approach for automatic bug triaging and fixer recom-

mendation was proposed by Anvik et al [27]. The technique use machine learning

algorithms in order to develop a recommendation model that can be used to au-

tomatically assign the bug report to accurate developer. Verity of features are

extracted from the summery and description sections of the bug reports, then a

model is developed from the historical data of bugs reports, on the basis of histori-

cal data prediction is made about the new bug to be assign to a specific developer.

The proposed technique is evaluated on Mozilla, GCC and Eclipse projects bug’s

reports, and achieves a moderate score in terms of precision and recall (i.e. 57%

and 64% for precision and recall respectively).

Hindle el al., 2009 proposed a classification framework for software maintenance

issue reports using machine learning algorithms [28]. The techniques classify dif-

ferent issue reports into five major classes that are corrective, adaptive, perfective,

feature addition and non-functional classes. initially issue reports are extracted

from version control system, and only 1% of the reports are manually labeled,

then machine J48 machine learning is applied on the datasets to predict the ac-

tual class of the issue reports, J48 yields an overall accuracy of 81% on three

different datasets, however, the most obvious limitation of the approach is the

small number of dataset and manual labeling.

Lamkanfi et al., 2010 proposed a novel approach that predicts the severity of

software bugs using the textual or summary description present in bug reports [29].

The proposed approach applies data mining and machine learning algorithms in

order to predict the severity of software bugs using the textual description. Bugs

are categorized on the bases of the two main severity levels that are major and

critical to blocker bugs. The proposed technique applies Näıve Bayes algorithm in

order to classify bugs according to predefine severity levels. One of the main lim-

itations of the proposed approach is its domain specific nature. Hence it requires

further enhancement in order to make it applicable for domain independent bug

reports.
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Chaturvidi and Singh 2012 Bugs classification using machine learning algo-

rithms on the NASA bugs dataset has been performed by Chaturvidi and Sing[30].

This is the first attempt that has been made to classify the software bugs using

machine learning algorithms using the summary section of the bug reports. The

proposed technique classifies software bugs according to five severity levels iden-

tified by NASA. For the classification of bug’s five widely used machine learning

algorithm is used such as Naive Bayes, K-nearest Neighbour, Support vector ma-

chine, J48 and Näıve Bayes multinomial. Most of the machine learning algorithms

achieved best performances when the top terms in the bug report description were

selected.

Younus et al., 2012 the authors in [31] presented another classification approach

to assist software bugs triagers in assigning bugs to relevant developer. The pro-

posed approach classifies the bugs based on the summary of the bug report. First

of all, features are extracted from the summary reports using the chi-Square and

TFIDF techniques. After the features selection process multinomial Näıve Bayes

algorithm is applied to the dataset. The dataset has been obtained from Bugzilla

and Eclipse containing more than 25 thousands bug’s reports. The multinomial

Näıve Bayes classifier achieved an overall accuracy of 86% on both the Bugzilla

and Eclipse bug reports datasets. However, one of the main limitation of this

approach is it cannot handle the synonyms that frequently occurs in bug reports.

Kanwal and Maqbool 2012 Recommendation system to assign priorities to

new software bugs using classification was presented by Kanwal and Maqbool [32].

The proposed approach applies support vector machine and Näıve Bayes machine

learning algorithms in order to determine the priority of software bugs in bugs

reporting repositories. Two new evaluation measures are also proposed that can

be fruit full in determining the accurate priority of bugs. The approach considers

two main features such as categorical and textual features. the obtained results

depicts that SVM performs better then Näıve Bayes in terms of textual features,

while Näıve Bayes yields better results in term categorical features. However, the

approach achieved better results when both the textual features and categorical

features were combined.
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Alenezi and Bantiaah 2013 another similar approach for the prioritization

of software bug reports using machine learning algorithm and texting has been

presented by Alenezi and Bantiaah [33]. Support vector machine, näıve Bayes

and decision tree algorithms is used to classify bug reports according to their

priorities. Initially cooperative or related features are extracted from the bugs

reports descriptions and summaries, and then SVM, Decision trees and Näıve

Bayes algorithm is applied to classify bug reports according to their priorities.

The obtained results depict that SVM and Decision trees completely outperformed

Näıve Bayes algorithm.

Zhang et al., 2015 presented an approach for predicting the severity of software

bugs reported in open-source software repositories like Mozilla Firefox and Eclipse

[34]. The proposed techniques predict the severity of software bugs using concept

profiles by mining software bug’s repositories. Historical bug’s data are mined from

the bug repositories using the different. Machine learning algorithms (i.e. KNN,

Näıve Bayes and multinomial Näıve Bayes) are applied on the Mozilla Firefox and

Eclipse dataset in order to severity of the reports bugs. The proposed technique

achieves better results in terms of precision and Recall using the concept profiles.

However, extracting concept profiles from software bug’s repositories is a trivial

task.

Goyal et al., 2015 presented an approach for classifying software bug reports

using data mining and machine learning algorithms [35]. The basic intuition be-

hind the approach is to develop a mechanism that can automatically classify bug

reports based on their severity levels. In order to accomplish this authors initially

clustered the reports based on the title of bug reports. After the clustering process

classification algorithms are applied to predict the severity of specific reports. The

proposed technique predicts the priority of bugs in two phases. In the initial step

similar bugs are combined into clusters based on different attributes such as report

title. In the second phase, classification algorithms are applied to clusters in order

to assign a priority of the different bug reports. All the classification algorithms

(i.e. Random forest, Bayes nets and SMO) yield better results on the clustered

bug reports as compared to the results on un-cluster data.
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Gujral et al., 2015 presented an approach for predicting and classifying soft-

ware bugs reports using text mining and machine learning algorithms [36]. The

proposed technique combines different dictionary terms that highlight the severity

of specific bugs present in bug reporting repositories. The technique develops a

dictionary of most common words that occur frequently in bug reports. The ba-

sic Intuition behind the approach is to combine those terms that often describe

the severity and non-severity of terms to form a dictionary that will be used to

assign priorities to new incoming bug’s reports. TFIDF is used to extract fea-

tures or terms form bug reports that will be used for predicting bug severity and

non-severity.

Pushaplatha and Murnalini 2016 presented an ensemble based classification

technique for predicting software bugs reports severity [37]. Begging ensemble

method is used to predict the severity of software bugs in open source bugs repos-

itories. Bugzilla dataset has been used in the evaluation and experimentation

process. Furthermore, the begging ensemble method is compared against the C4.5

classifier. The technique predicts the severity of bugs on seven predefined severity

levels. The technique achieves better results on the underline dataset; however,

the technique is domain dependent and scales very poorly on other datasets.

Jin et al., 2016 another research work presented by Jin et al [38] tried to enhance

the prediction process of bug’s severity using machine learning algorithms. The

technique takes only those bugs reports that are reported with normal severity

level. Various features like product name, component, reporter and severity of the

reported bugs are included. The technique only focuses on the bugs that have

normal level of severity which most of the existing approaches does not consider

in the prediction process. Only normal severity levels of bugs are obtained from

Eclipse and Bugzilla bug repositories. The proposed approach achieves better

results in terms of precision and recall (i.e. 70 % precision and 74 % recall).

Zhang et al., 2016 presented an automatic bug’s severity prediction and fixer

recommendation system using machine learning algorithms. Historical bug’s data

is extracted and process using REF and K-NN algorithm to find patterns that

similarity to new reported bugs [39]. In the next phase verity of features like
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reporter and similarity among the existing reports and new reports is identified

using similarity measures. The approach is evaluated on five different datasets

obtained from GNU compiler collections (GCC), open office, Eclipse, Mozilla and

Net Beans. Experimental results on these datasets reveals that the approach out

performs the existing state of the art bugs severity prediction and recommen-

dation system. However, the approach is a semi-automatic and requires human

interference and expertise.

Xuan et al., 2017 presented a semi supervised based classification technique for

the triaging new bugs reports using a machine learning algorithms and weighted

recommendation list of candidate developers for the resolving a specific issue [40].

The proposed technique makes use of both label and unlabeled bug reports for

classification. Initially the näıve Bayes classifier is trained with label bugs reports

and then unlabeled bugs are used for training the classifier. The proposed approach

achieves an overall accuracy of 75% on the Bugzilla and eclipse datasets.

Mani et al., 2018 presented a novel approach for bugs triaging and classification

using a DBRNN-A [23]. The techniques takes bugs reports from three open source

bugs tracking system and applies the neural network algorithm in order to extract

the syntactic and semantic information from the bug reports. Machine learning

algorithm is applied to classify and triage the bug reports which also contain the

unfixed bug’s reports. The proposed technique only considers the bug title and

bug description of the bug report and achieves an overall average accuracy of 78%

on the three open source datasets.

Kukkar and Mohna 2018 A hybrid approach that combines text mining (TM),

Natural language processing (NLP) and machine learning for classifying software

bug reports into actual bugs and non-bugs has been presented by Kukkar and

Mohna [41]. The technique combines TM, NLP and machine learning algorithm

and four incorporated fields related to software bugs. These fields are reporter,

severity, priority and component in the bug’s reports. TFIDF and bigram method

is used to select and extract features from the textual description of bug’s reports

summary. After the extraction process K-NN algorithm is applied to five different

bug reports datasets. The dataset are obtained from open source bugs repositories
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like Bugzilla, Eclipse, Jboss, Firefox and open FOAM. K-NN algorithm achieves

better results in terms of precision, recall, and accuracy when TF-IDF is used.

Pushaplatha and Murnalini 2019 Bugs reports classification and severity pre-

diction technique for closed source software bugs has been presented in [42]. Four

widely used machine learning algorithms are applied on the PITS dataset of NASA

obtained from PROMISE bugs reporting repository. The proposed technique uses

begging, voting, Adaboost and ensemble methods to predict the severity of bug

classification. To reduce and remove redundancies in the dataset two preprocessing

techniques (i.e. information gain and Chi-Square) are used. The PITS dataset is

divided into five different categories alphabetically starting from A to F. Informa-

tion gain method significantly contributes to overall accuracy. All of the employed

algorithms achieve the same results on all the PITS when information gain is used

for data dimensionality reduction.

Ramay et al., 2019 an approach for classifying and predicting bug severity using

deep neural network has been presented by Ramay et al [43]. Initially natural

language processing techniques are applied to preprocess the bug’s reports, and

then a new score is calculated that is based on the emotion of bug reporters.

Finally a vector is created from is the preprocessed bug reports which is passed

into a deep neural network in order to predict the severity classes (i.e. critical,

miner and blocker). The proposed technique achieves an overall F-measure score

of 75%.

Otoom et al., 2019 presented an automated approach for bug’s reports classi-

fication. The proposed approach extracts different features form the description

of bug reports [21]. The feature set is developed on the basis of the common

occurrences of the different key words in the summary and description part of

the reported bugs. The developed feature set is then passed to machine learning

algorithms for classifying the reports in two main classes that are corrective and

perfective classes. the proposed approach achieved an overall accuracy of the 93%

on three different datasets obtained from aspectj, Tomcat and SWT. One of the
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main limitations of the proposed approach is the small number of the dataset and

the very limited number of feature set.

Sarkar et al., 2019 proposed a classification based approach for bug triaging

at Ericsson which is major telecom services and technology provider through the

world [22]. The proposed technique combines textual attributes with categorical

attributes of the bug’s reports; it also incorporates additional information such as

alarms and crash dumps collected from the bug reports. A bug reports dataset is

developed using the internal bugs tracking system used by Ericsson. a simple logis-

tic regression machine learning algorithm for classifying and triaging bugs reports

to different development teams. The most important aspect of this approach is the

use of the confidence score for assigning a particular issue to a certain developer.

The proposed technique achieves accuracy of 90%.

Otoom et al., 2019 presented an automated approach for bug’s reports classi-

fication. The proposed approach extracts different features form the description

of bug reports [21]. The feature set is developed on the basis of the common

occurrences of the different key words in the summary and description part of

the reported bugs. The developed feature set is then passed to machine learning

algorithms for classifying the reports in two main classes that are corrective and

perfective classes. the proposed approach achieved an overall accuracy of the 93%

on three different datasets obtained from aspectj, Tomcat and SWT. One of the

main limitations of the proposed approach is the small number of the dataset and

the very limited number of feature set.

Sarkar et al., 2019 proposed a classification based approach for bug triaging

at Ericsson which is major telecom services and technology provider through the

world [22]. The proposed technique combines textual attributes with categorical

attributes of the bug’s reports; it also incorporates additional information such as

alarms and crash dumps collected from the bug reports. A bug reports dataset

is developed using the internal bugs tracking system used by Ericsson. a simple

logistic regression machine learning algorithm for classifying and triaging bugs re-

ports to different development teams. The most important aspect of this approach
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is the use of the confidence score for assigning a particular issue to a certain de-

veloper. Bug reports are triaged and classified based on the confidence score given

by classifier to each developer. The proposed technique achieves accuracy of 90%.

Table 2.1: Summary of different approaches investigated in the literature
review

Ref. Description
Attributes used Performance

Algo. DatasetLabels Analysis
Tex. Cat. Acc PR RE FM

D.

Cubranic

and

G. C.

Mur-

phy

2004

Assign bugs to

correct

software

developer to

be resolved in

time using

machine

learning

algorithm

bug

descrip-

tion and

sum-

mary

Nil 30% Nil Nil Nil Näıve

Bayes

Clas-

si-

fier

Mozilla

Fire-

fox

dataset

2 Näıve Bayes

achieve

better

results on

small

training sets

John

Anvik

2006

Recommendation

system for

bugs

assignment to

expert

developers

bug

descrip-

tion and

sum-

mary

product,

compo-

nent,

version,

plat-

form,

priority

67% Nil Nil Nil SVM

and

Clus-

ter-

ing

al-

go-

rithm

Eclipse

and

Bugzilla

datasets

2 The

approach is

still manual

at large and

requires

human

expertise

Menzies

and

Mar-

cus

2008

Predicting

severity and

non-severity of

bugs reports

using machine

learning

algorithm

bugs

descrip-

tion,

sum-

mary

priority Nil 91% 59% 71% Näıve

Bayes

NASA

promise

Dataset

5 The

approach

performs

well on small

datasets,

however, it

performs

poorly on

large dataset

Murphy

et al

2009

Automatic

approach for

new bugs

prediction and

assignment to

appropriate

developers

bug

descrip-

tion and

sum-

mary

Product,

compo-

nent,

version

69% 71% 73% Nil Support

vec-

tor

ma-

chine

Mozilla,

GCC

and

Eclipse

2 SVM yields

better

results on

both Mozilla

and Eclipse

datasets,

however, it

poorly

performs on

GCC dataset

Hindl

et al

2009

machine

learning based

classification

technique for

classifying

issue reports

in to different

classes

issue ti-

tle, de-

scription

author,

commit

infor-

mation,

type

81% Nil Nil Nil J48

and

SMO

MySQL,

boost.

spring

frame-

work

the

classification

accuracy is

better,

however, the

manual

labeling of

dataset is

quite

challenging

task
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Lamkanfi

et al

2010

Predicts the

severity of

bugs using

machine

learning

algorithm and

data mining

bugs

descrip-

tion,

sum-

mary

product,

compo-

nent,

version,

platform

Nil 82% 78% Nil Näıve

Bayes

Mozilla

Fire-

fox,

Eclipse

and

GNOME

datasets

2 the

technique

achieves

efficient

results,

however, the

main

limitation is

the domain

specific

nature of the

technique

K. K.

Chaturvedi

and

V. B.

Singh

2012

Software bugs

severity using

machine

learning

Bug

title, de-

scription

and bug

type

priority 65% Nil Nil 74% SVM,

Naive

Bayes,

K-

Neighbour

NASA

soft-

ware

bugs

Dataset

Nill The

algorithms

achieves

varying

results in

terms of

precision and

Recall

M.

Younus

Javed

Hufsa

Mohsin

2012

Software bugs

classification

using Näıve

Bayes and

Chi-Square

and TFIDF

bug title

and de-

scription

product,

compo-

nent,

version,

plat-

form,

priority

83% Nil Nil Nil Multi

no-

mial

Näıve

Bayes

Bugzilla

and

Eclipse

Datasets

Nil Näıve Bayes

performs

well in terms

of accuracy

on Bugzilla,

however, the

Eclipse

results are

not

satisfactory

Jaweria

Kan-

wal

and

On-

aiza

Maq-

bool,

2012

Prioritize new

bugs to assist

the bug

triaging

process using

machine

learning and

text mining

Title,

sum-

mary

product,

compo-

nent,

version,

platform

, priority

Nil 85% 81% Nil SVM

and

Näıve

Bayes

Eclipse

dataset

5 SVM and

Näıve Bayes

generates

efficient

results when

textual and

categorical

features are

combined,

however, the

approach is

still

dependent

on human

expertise

Mamdouh

Alenezi

and

Shadi

Bani-

taan,

2013

Prediction and

classification

to prioritize

new reported

bugs using

machine

learning

techniques and

text mining

approaches

bugs

descrip-

tion,

sum-

mary

priority Nil 41% 39% 40% SVM,

Näıve

Bayes

and

De-

ci-

sion

Trees

Eclipse

and

Fire-

fox

3 Decision

trees and

SVM

performs

better on

both

datasets,

however,

Näıve Bayes

yields

varying

results in

terms of

precision,

recall and

accuracy
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ShruuGujral

et al

2015

Texting

mining based

dictionary and

ML algorithm

is used to

predict the

severity and

non-severity of

bugs

bugs

descrip-

tion,

sum-

mary

91% Nil Nil Nil Näıve

Bayes

multi-

no-

mial

Bugzilla 2 The

approach is

heavily

dependent

on the

dictionary

terms

Neetu

Goyal

et al

2015

Close source

software bugs

severity

prediction

using machine

learning

algorithms

Description

title and

bugs

report

sum-

mary

Priority 75% 67% 759 Nil K-

mean,

Bayes

net,

RF

and

SMO

Closed

source

dataset

3 RF, Bayes

net and SMO

achieved

better

results on

the clustered

reports as

compared to

un-clustered

reports

Tao

Zhang

et al

2015

Predicts the

severity of

bugs using

concept

profiles and

machine

leaning

algorithms

bugs

descrip-

tion and

sum-

mary

priority Nil 81% 89% 85% KNN,

Näıve

Bayes

and

Multi-

no-

mial

Näıve

Bayes

Mozilla

Fire-

fox

and

Eclipse

2 The

applicability

of the

approach is

only limited

to open

source

software

projects

Pushpalatha

M N

and

Mrunalini

M

2016

This approach

predicts the

bug severity

using ensemble

begging

classifier

bugs

descrip-

tion and

sum-

mary

priority 79% 81% 77% Nil Ensemble

beg-

ging

clas-

si-

fier

Bugzilla

dataset

3 The

proposed

technique

achieves

better

results,

however, it

does not

cover cross

component

bugs

Tao

Zhang

et al

2016

Automatic bug

severity

prediction and

fixer recom-

mendation

system for

open source

bug

repositories

bugs

descrip-

tion,

sum-

mary,

product,

version

75% Nil Nil Nil K-

NN

and

R£F

GCC,

open

of-

fice,

Eclipse,

Net

Beans

and

Mozilla

The

approach out

performs the

existing

approach for

severity

prediction

and fiver

recommenda-

tion,

however, the

process is

still manual

at large

Jin

et al

2016

Predicts bugs

severity of

normal

severity level

of bugs using

machine

learning

algorithms

bug

descrip-

tion and

sum-

mary

product,

compo-

nent,

version,

status,

priority

Nil 78% 79% - Multinomial

Näıve

Bayes

al-

go-

rithm

Eclipse

and

Bugzilla

2 MNB

achieves

better

results on

Bugzilla

dataset,

however, its

performance

varies on

Eclipse bugs

reports
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Xuan,et

al

2017.

Classification

based

approach for

bug triaging

using machine

learning

algorithms

bugs

descrip-

tion and

sum-

mary

75% Nil Nil Nil Naive

Bayes

Bugzilla

and

eclipse

2 naive Bayes

achieves

good results

but the

approach is

Manuel at

large

mani

et al

2018

Novel

approach for

bugs

classification

and triaging

using deep

learning

bugs

title and

descrip-

tion

78% Nil Nil Nil Deep

learn-

ing

(DBRCNN-

A)

core,

Fire-

fox

and

Google

chromium

the approach

generates

better

results

however, it

only

considers the

textual

information

of the bugs

report

Ashima

and

Mo-

hana

2018

Classification

of bugs reports

into bugs and

non-bugs

bug

descrip-

tion,

title and

sum-

mary

component,

status,

priority

86% 78% 80% 79% K-

NN

Bugzilla,

Fire-

fox,

Jboss,

Eclipse

and

open

FOAM

2 The feature

extraction

process is

very time

consuming

and heavily

dependent

on specific

domain

Ramay

et al

2019

Prediction of

bug severity

using deep

neural network

and emotion

based features

bugs

descrip-

tion,

sum-

mary

product 87% 80% 80% 81% Deep

neu-

ral

net-

work

Eclipse

and

Mozilla

Deep neural

network

achieves

good results,

however, the

score

emotion

calculation

process can

influence the

results

Otoom

et al

2019

Automated

classification

of software

bugs reports

using the

feature set

instead of

complete

reports

Bugs

title

descrip-

tion and

sum-

mary

report

status

93% Nil Nil Nil SVM,

De-

ci-

sion

tree

Tomcat,

As-

pect

j and

SWT

2 the approach

achieves an

overall

accuracy of

93% on very

small and

manual

labeled

dataset

Sarkar

et al

2019

bugs triaging

and

classification

technique

using ML and

confidence

score

bugs

descrip-

tion and

sum-

mary

product,

site,

priority,

cus-

tomer,

configu-

ration,

genera-

tion

79% 78% 79% Nil logistic

Re-

gres-

sion

Ericsson

dataset

2 the

technique

achieves

better

accuracy,

however, the

no of triage

bugs is small
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Pushaplatha

2019

Four machine

learning

algorithm is

used for

predicting bug

severity of

closed source

software

projects

bugs

descrip-

tion,

sum-

mary

priority 81% Nil Nil Nil Begging,

Ran-

dom

for-

est,

Ad-

aboost

and

en-

sem-

ble

clas-

si-

fiers

PITS

dataset

ob-

tained

from

NASA

PROMISE

repos-

itory

2 Information

gain method

gives better

results in

terms of

accuracy as

compared to

Chi-Square

method

2.2 Summary and Gap Analysis of the Litera-

ture Review

In this section we have performed a comprehensive analysis of the existing tech-

niques for bugs classification and triaging shown table 3. There exists an extensive

literature on bug’s classification and triaging process. In the existing literature

most of the approaches uses machine learning algorithms and some techniques are

based on text mining and information retrieval as well as dictionary and meta-

data based. However, most of the existing techniques have some limitations and

short-comings, and therefore, they are unable to fully address the problems and

issues of automated bugs classification and triaging process. The following are the

findings of our conducted literature review.

1. Most of the existing approaches use only the textual attributes of bug re-

ports, although some approaches have considered the categorical attributes

present in bug’s reports, however, only a few a categorical attributes are con-

sidered for the classification and triaging process. For example, in [25][37][28].

[29][31][22] used different categorical attributes likes product, platform, de-

veloper, status and reporter and textual attributes like bug title and descrip-

tion for classifying software bug reports. However, all of these approaches

classified software bug reports in two classes, that were actual bug’s and

non-bug’s classes. These approaches achieved better results in terms of clas-

sification but their results are less fruitful to be used in real development and
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bug classification environments. Furthermore, authors in [33][35][26]used 3

and five number of classes for classifying software bug reports, however, they

mostly focused on the textual attributes of the bug reports. Although, cate-

gorical attributes can be beneficial for the accurate classification and triaging

of the bugs reports.

2. Another interesting point we have observed from the detailed analysis of

the literature review is that most techniques have used very few machine

learning algorithms, for instance, algorithms like (i.e. näıve Bayes, Support

vector machines, decision trees and KNN) are widely used for bugs classifica-

tion and triaging process. Although few approaches have used deep learning

algorithms such as deep neural network and DBRNN-A algorithms, but in

the case of the deep learning algorithm only textual bug attributes are con-

sidered. Hence, other machine learning and deep learning algorithm can be

applied in bug’s classification process.

3. Another issue that has been observed from the detailed analysis of the liter-

ature review is the number of the classification classes that have been used,

for instance, in [21][22][42] the authors only used two classes (i.e. perfective

and corrective class) for the classification of software issue reports. The use

of the less number of classes significantly increases the accuracy, but their

results are less fruitful. Selecting the number of accurate and suitable classes

for classification is a challenging and crucial task.

4. No existing approach in the literature has performed the comparison of dif-

ferent attributes of issue reports.

5. The last major issue that we have observed during the literature review is

that only one proposed technique by Sarkar et al[22] have used the feature

of confidence score, the high confidence score means the model have triaged

or classified particular software bugs report with higher confidence score.

6. Furthermore, to the best of our knowledge no approach in the literature has

evaluated the performance of different attributes of software issue reports.



Chapter 3

Proposed Approach

In this chapter we explain the working of our proposed approach for bugs classifica-

tion. We describe different components and steps involved in the implementation

of the propose work , for instance dataset selection, preprocessing, selection of

classes and applying machine learning algorithms on the three open sources bug

reports datasets. We explain the working of the proposed approach step by step

in this chapter.

3.1 Selection of Bug Reports Dataset

In order to effectively categorize and classify software bugs reports into different

classes using machine learning algorithms. We have selected and retrieved bug

reports from two widely used bugs tracking repositories. These repositories are

Bugzilla and Google Chromium. We extracted two bug datasets from Bugzilla

[44] and Google chromium [45] bug tracking system. The dataset contains bugs

reports filed against Mozilla core and eclipse platform

The composition of our datasets consists of forty thousand bug reports. From

which twenty thousand bug reports belong to core category of Bugzilla product

list, twenty thousand bugs from eclipse product category. We extracted all these

bug reports in CSV format, currently; most of the bug tracking systems provides

30



Research Methodology 31

Table 3.1: Statistical information for Eclipse Dataset

Eclipse Dataset
Total No of Features 14
Total No of Instances 20000

Total No of Classes Data
4 (Enhancement bug,
GUI bug,Logical bug,
No bug)

Total No of Instances of Enhancement
bug

4398

Total No of Instances of GUI bug 5025
Total No of Instances of Logical bug 7815
Total No of Instances of No bug 2757

Table 3.2: Statistical information for Firefox Dataset

Firefox Dataset
Total No of Features 12
Total No of Instances 19937

Total No of Classes Data
4 (Enhancement bug,
GUI bug, Logical bug,
No bug)

Total No of Instances of Enhancement
bug

3457

Total No of Instances of GUI bug 5298
Total No of Instances of Logical bug 8215
Total No of Instances of No bug 2967

the facility to download bug reports for different purposes. We extracted the bugs

reports filed from 2010 to 2018 in these bugs tracking systems. Normally some

bug reports contain alarms and crash dumps. However, only 5.2% of bug reports

contain alarms and crash dumps [46], we ignore and discard those bug reports

that contains alarms and crash dumps. Furthermore, processing of alarm and

crash dumps reports required huge amount of resources and it rarely contributes

in improving bugs classification.

Moreover, the selection of software bug reports dataset is also based on the liter-

ature review we conducted in chapter 2. As most of the approaches have used te

Eclipse and Firefox dataset for experimentation. The Tables 3.1 and 3.2 we pro-

vide the statistical information about the selected datasets used in this research

work
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3.2 Dataset Preprocessing

One of the most fundamental activities in bug’s reports classification process is the

preprocessing activity. In order to clean the dataset from noise and irregularities

for experiments we perform the preprocessing of bug reports. The preprocessing

consists of the following steps.

1. Segmentation of bug reports: the first step after reading the dataset files in

CSV format; we separated the bug reports in to sentences level segments.

2. In the next step we perform tokenization process; tokenization is applied for

separating each term into tokens.

3. After the tokenization process natural language processing technique is ap-

plied for removing stop words. Stop words are the most common occurrence

of frequent words in the text that have no impact of the overall semantic of

the text. We remove stop words such as “is”, “the”, “are”, “it” and many

more word like this. However, we give great care with the removal of stop

words, we applied negation in order to not remove world like “not”, “don’t”

present in the bug reports. . We did this due to retain the actual status of

the text in bug report. For example if a title of bug contains text like “this

login option is not working” and if we remove the stop word “not”, it will

completely alter the semantics of the bug title which will means that the

login option is working correct instead of wrong. Hence, keeping in mind the

importance of certain terms in the bug’s reports, we applied the negation

function to retain those terms that are necessary for maintaining the actual

meaning of the text.

4. IV. After the stop word removal process we apply lemmatization technique

to stem all terms into their base form. In this work we use porter stemmer

and snowball stemming algorithm [47] for reducing certain key words into

base form.

5. Once the stop word removal and lemmatization process completes, we extract

features from the datasets of the bug’s reports. Feature set is extracted



Research Methodology 33

for mapping bugs reports into different classes based on the occurrence of

common words present in bug reports. We extract feature set against the

most common occurrence of certain key words that represents bugs that

belongs to different bug classes, such as actual bugs, non-bugs, logical bugs

and enhancement bugs.

3.3 Feature Set

Normally in bug classification process a bug report is assigned to a particular class

based on the feature set commonality. We extract and develop a feature set based

on the most common occurrences of different terms that is normally used in bug

reports to refer to a certain problem. For example, to distinguish a graphical

user interface bug from data type bug, normally terms like buttons, boarders,

page, pixel and other similar terms are present in the bug reports that refer to

graphical user interface (GUI) bugs. We extract more than 200 terms from the

bugs reports, which will be used as feature set for mapping software bug reports

to different classes and categories.

3.4 Selection of Bug Attributes

Normally, software issue reports consist of different fields and attributes. These

attributes or fields are classified into two categories, (a) textual attributes and (b)

categorical attributes. Textual fields contains information like bug title, descrip-

tion and summary attributes of the bug attributes. Normally these attributes

are in free text form. Textual attributes contains very useful information that

describes the occurrence of issue in a software system. Furthermore, the textual

information plays an important role in classification process of bug reports. How-

ever, processing and getting meaningful information from the textual attributes is

a challenging and complex task [48].
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On the other hand categorical field consists of different information related to

software bugs. Majority of software bug reports contains several categorical infor-

mation such as product name, version, component name, priority, reporter name,

reporting time, and date etc. apart from this bugs reports contains several other

categorical attributes.

In order to effectively classify bug reports in correct and appropriate classes, we

select and choose different combination of both categorical and textual attributes

for experiments. For example, we first use textual attributes like title and sum-

mary and evaluate its classification performance. Next we use both the bug title

and summary attributes of issue reports and assess its classification performance.

However, from the literature survey we conducted in chapter 2 of this thesis we

observed that using only textual attributes of the bug reports does not provide

fruitful results. Hence, we combine and use both categorical and textual attributes

of bug’s reports in order to improve the performance of our proposed approach.

Moreover, the software bug reports attributes are selected keeping in mind the

attributes that have been used in the literature. For instance, in the literature

review we observed that most of the existing approaches have used title, sum-

mary and description attributes from the textual attribute category, while in case

of categorical attributes like severity, priority, platform and versions are used ex-

tensively. Our proposed approach for software bugs classification employs 8 bug

report attributes shown in Table 3.3.

3.5 Feature Selection Method

Normally there are different methods to select features from the datasets, one of

the easiest but very time consuming and expensive method is to select all the

possible combination of features present in the dataset and run experiments based

on that. However, this feature selection method is not feasible when we have more

number of features. The other method is to use a filtration method for the feature

selection process. In our case we initially extract features using a filtration method

and after that we apply wrapper technique to find the best and effective set of
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Table 3.3: textual and categorical attributes of bug reports that has been used
in this work

Attribute type Attribute name Short description

Textual Title description
Brief description
and details about
the bug

Textual Detail Summary

Explanation of the
reported bug with
possible
reproduction
mechanism

Textual Expert suggestion

Answers or
suggestions of the
developers against
a particular bug

Categorical Priority

This shows the
criticalness of the
bugs on the

scale of 1 to 5

Categorical Product
The name of the
product in which
the bug appeared

Categorical Version
the specific version
of product

Categorical Severity

Impact of the
reported bug in
the functionality

of the reported bug,
severity classes are
minor, major, critical,
blocker etc.

Categorical Platform
Platform of the
product in which
the bug appeared

attributes. In order to select textual features we used the filtration method of

TF-IDF, while for the selection of categorical features we used the information

gain.

We have used the wrapper technique for the subset evaluation in order to determine

the effectiveness of our selected 8 attributes of software bug reports. Wrapper

technique offer different methods and ways to perform subset evaluation. In our

case we have applied the classifier subset evaluation technique within the wrapper
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method for determining the effectiveness of the different attributes of software bug

reports.

3.6 Feature Selection Method for Evaluating the

Effectiveness of Bug Reports Attributes

In machine learning, Feature selection is the process of choosing variables that are

useful in predicting the response (Y). It is considered a good practice to identify

which features are important when building predictive models. In our thesis we

have used one of the well-known feature selection techniques (i.e. wrapper method)

which are used by various authors in literature. In these methods, the feature

selection process is based on a specific machine learning algorithm that we are

trying to fit on a given dataset. It follows a greedy search approach by evaluating

all the possible combinations of features against the evaluation criterion. The

evaluation criterion is simply the performance measure which depends on the type

of problem. For classification the evaluation criterion can be accuracy, precision,

recall, f1-score, etc. Finally, it selects the combination of features that gives the

optimal results for the specified machine learning algorithm. In the attributes wise

comparison for finding the effectiveness of our selected attributes, we have used

the wrapper (i.e. classifier subset evaluation) in order to find the effectiveness

of the selected attributes that we have used in the this research work. We have

applied first TF-IDF and information gain in order to limit the feature set obtained

from the dataset. Because applying wrapper technique on large number of feature

yields huge number of combinations. In order to avoid tis we applied the filtration

method. The main reason for applying wrapper technique is to determine the

most effective set of attributes from the list of all attributes that we have used in

experimentation
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3.7 Classes Selection for Classification

Traditionally, in the classification problems data instances are mapped into differ-

ent labeled classes based on the similarity and commonality between them. In soft-

ware bugs classification various approaches have used different number of classes

for classifying software bugs into different categories. However, some techniques

use only two classes while some techniques have used more number of classes. It is

evident from literature that less number of class’s yields better performance; how-

ever, their results are not satisfactory and cannot be relied upon. On the other

hand more number of classes yields moderate results in terms of performance but

it leads to better classification.

In order to counter number of classes issue for bug’s classification, we use total

five classes. These classes are actual bugs and non-bugs. Furthermore, these

two classes are divided into sub-classes. Such as actual bug class is divided in two

classes i.e. logical and GUI class. Non-bug class is divided into two subclasses, such

as enhancement and analysis/build class. The basic intuition behind our selected

number classes is that fully covers bugs taxonomic categorization. Furthermore,

our feature set is comprehensive and covers all the selected number of classes. In

the experimentation and evaluation phase we use varying number of classes in

order to evaluate the performance of machine learning classification algorithm on

all the classes. We believe that use of variable number of classes will leads us to

the selection of accurate number of classes that can be used for classifying software

bug reports. List of features of respected categories present in Table 3.4.

3.8 Conversion of Classes into Binary and Mul-

ticlass

We have classified software bug reports into different classes, these classes are

actual bugs, non-bugs, logical bugs, enhancement bugs and graphical user interface

bugs. As our database is consist of multi labels, so in order to convert the dataset
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Table 3.4: List of features set extracted from Eclipse and Firefox Bug reports
dataset

Class name Feature set

Actual Bugs
˜Actual bugs are the software issues
˜which is included in the logical, GUI
˜and enhancement bugs

Non Bugs
Terms which are not included in the
feature set for the rest of the classes

Logical bugs

assertion, annotation,˜ argument,
application, attempting, break,
broken, behavior, badly, call,
cause, code, clustering,
component, core, default,
˜does not, error, exception,
˜edit, found, fail, frame,
handle, host, implement,
incorrect, integrate, incomplete,
˜java, library, logic, miss, mention,
˜work, null, option, pointer,
parameter, pluggable, problem,
˜portability, redirect, remove,
˜read, replica, run, repeat,
server, session, submit,
search, statement, status,
service, start, throw, validate,
wrong, not, proper, should,
array, blob, binary, char, numeric,
hard, real, string, text, variable,
value, cache, crash, throw, fault,
˜heap, memory, segmentation,
˜segmentation-fault, smart, threads

GUI bugs

button, border, background,
blank, bundle, CSS, container,
captcha, display, event, font,
HTML, item, image, list, label,
˜line, layout, locale, method,
message, navigator, pixel,
page, render, resource,
space, selection, show,
tag, toolbar, typo, click,
mouse, key, resolution, table

Enhancement bugs

add, enhance, ignore, improve,
optimization, performance,
required, support, can, may,
suggest,˜ ant, build, compile,
˜config, debug, log, make,
module, patch, redeploy,
syntax, warnings,˜ OS
concurrent, path, RedHat,
Unix, windows, case
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from multiclass to binary class for binary classification. We have used a conditional

function that is used for converting multi classes to binary classes. The conditional

functional is made of the following values and parameters.

Actual bugs = logical, enhancement, graphical user interface bugs.

Non bugs = other ten the actual bug class

Here the actual bug class in the binary classification is consists of three different

classes (i.e. Logical, enhancement and graphical user interface bugs) while the

non-bug class will contain bug reports that does not fall into any of the actual bug

class category.

3.9 Selection Method of ML Learning Algorithms

In classification problem the selection of classifier is very much important and a

very critical decision. This selection depend on many factors such as 1) size of

a dataset, 2) Speed or training time, 3) Number of features , 4) type of data

5) complexity of classifier and so many more. However, different classifier have

different set of requirement for their selection such as 1) If you have a limited and

small dataset and your data is supervised, then base on machine learning theory it

is better to use a classifier with high bias like Naive Bayes, 2) KNN and SVM are

more conventional, and is suitable for small datasets, 3) Näıve Bayes also perform

well in case of categorical input variables compared to numerical variable and so

on. So there is no suitable classifier which covers all of the above factors of our

dataset. Due to this reason mostly researchers have recommend two ways, the first

one is review research papers of your area in which you are working and picked

that classifier which are mostly used in literature and second way is to evaluate

all the classifiers and then, make comparison on their performance and select that

one which have return highest results.

After comprehensive literature we have selected 6 different classifiers which are

mostly used by researchers. The classifiers are 1) Decision Tree (J48), 2) Random

Forest, 3) K-Nearest Neighbors, 4) Gaussian Näıve Bayes, 5) Naive Bayes and 6)
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Table 3.5: Algorithm Properties

Algorithm Parameters or Properties
Decision Tree J48, Kernel =sigmoid
Random Forest max depth=2, random state=0
K-nearest Neighbor n neighbors =5
Gaussian Naive Bayes Use default setting
Naive Bayes Use default setting
SVM Kernel =sigmoid

SVM. The below table represent the classifiers name and there parameter which

we have used The main reason behind the selection of these six particular machine

learning algorithms is that SVM, näıve Bayes, Decision tree, K-NN and Random

forest are regularly used in the literature. For example, in the literature [42] used

SVM and Decision tree, [43] used random forest, while [37], [23] used K-NN and

näıve Bayes The Table 3.5 represent the classifiers name and there parameter

which we have used.

3.10 Machine Learning Algorithms

Machine learning algorithms are one of the most powerful and efficient family of al-

gorithms. Our bug’s reports classification and triaging approach employs machine

learning algorithm for classification purposes. Traditionally machine learning al-

gorithms such as support vector machines (SVM), näıve Bayes (NB), decision tree

(DT) and multinomial näıve Bayes(MNB) are widely used in the existing litera-

ture for bugs classification and triaging process. In our approach we used several

machine learning algorithms. Basic reason behind the use of more algorithms for

classification is to investigate the performance of these algorithms for bug’s reports

classification purpose. Another important reason behind the selection of machine

learning algorithm is to perform a comparative analysis among the selected ma-

chine learning algorithms. Hence this comparison will lead us to make decision for

selecting the most proper and suitable machine learning algorithms for classifying

software bugs reports. Apart from this we compare performance of machine learn-

ing algorithms using different evaluation measures such as F-measure, Precision,

recall and Accuracy.
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3.10.1 Support Vector Machine (SVM)

Support vector machine commonly referred as SVM is a supervised machine learn-

ing algorithm that takes an input and produces a mapping function output using

a labeled data instances [49]. SVM is considered as one of the most effective

and powerful machine learning algorithm and has been widely used in different

domains, such as text mining, image processing and facial recognition systems.

SVM algorithm starts working by transforming the training set data into high di-

mensions. After the transformation process the algorithm starts search for finding

the most effective hyper planes that divided the training set. Hyper plane is used

to distinguish classes from each other. Support vector machine can work with both

linear and nonlinear data classification. SVM provides powerful features such as

linear classification approaches can be applied to data which is nonlinear in nature.

Furthermore, it is considered effective classification algorithm than other classifica-

tion algorithms in terms of performance. LIB support vector machine (LIBSVM)

is the publicly available java based implementation which can be integrated into

data mining tools like Weka [50].

3.10.2 Näıve Bayes

Näıve Bayes is another supervised machine learning algorithm used for classifica-

tion of text and several other problems. Näıve Bayes algorithm uses conditional

probability of Bayesian rule for classification purposes [51]. NB treats all the in-

stances and attributes of training is a single entity and undertakes that all the at-

tributes or data instances have equal importance for accurate classification. Näıve

Bayes is very simple and effective machine learning algorithm which is wieldy used

in different application areas such as text classification and text mining [52]. The

performance of näıve Bayes is not effective for text classification problems due to

several reasons. For example, näıve Bayes algorithm treats every attribute inde-

pendent of other class attributes. Hence, this assumption of näıve Bayes algorithm

results in low performance in text classification. However, due to simplicity and

effectiveness it is still widely used in text classification problems.
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3.10.3 Gaussian Näıve Bayes

Gaussian näıve Bayes is a variant of the näıve Bayes algorithm which is an ensemble

classifier widely used in the classification problems [53]. GB is normally used to

remove or Hindle the linear attributes in the näıve Bayes classifier. Gaussian näıve

Bayes algorithm uses Gaussian distribution mechanism in order to represent the

outcomes of the different classes based on the distribution probability.

3.10.4 K-Nearest Neighbour

K-nearest Neighbour is another supervised machine learning algorithm widely used

in different classification problems such as text classification [54]. K-nearest Neigh-

bour is also referred as K-NN. K-NN starts working by finding the K nearest el-

ements in the data and uses these K nearest categories to weight the different

elements in the document. Normally the performance of the K Nearest Neighbour

algorithm depends on two parameters; these parameters are the similarity function

for K and its value.

3.10.5 Decision Tree

Another supervised machine learning algorithm we use for classifying software

bugs reports is decision tree. Decision tree resembles like a simple tree like struc-

ture, which contains leafs and nodes [55]. Normally, decision tree is also referred

to as classification tree; classification tree learns different models and their asso-

ciated functions that contain dependent and independent variables. Decision is

very simple but yet very powerful classification mechanism and is widely used in

different classification problems.

3.10.6 Random Forest

Random forest commonly referred as RF is an ensemble classifier that works in

bagging and boosting mechanism. Random forest classifier uses a combination of
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Table 3.6: Confusion matrix for evaluation

Total number of bugs
Accurately Predicted bugs

˜ Positive Negative
Positive TP FN

˜ Negative FP TN

different models that help in assigning votes to the most accurate and suitable

input class [56]. Random forest consists of many classifiers that help in voting

process for selecting the most suitable value for input class. Random forest has

several advantages as compared to bagging or boosting, such as random forest

handles outliers and proximities more effectively and accuracy as compared to

bagging and boosting.

3.11 Performance Evaluation Measure

Traditionally classification model accuracy and performance evaluated using vari-

ous performance evaluation measures, such as accuracy and precision. Normally a

confusion matrix is used for performance evaluation of machine learning classifiers,

which gives results about the actual and predicted classification done by classifier

model. In order to evaluate the performance and effectiveness of our proposed

approach, we use four widely used evaluation measures, i.e. accuracy, precision,

recall and F-measure. These measures are obtained using a confusion matrix, the

confusion matrix contains four values that true positive (TP) which means the

actual positives values the classifier predicted, true negative (TN) values means

actual negative values which the classification model predicted accurately. The

other two values are FP and FN, false positive means the actual values are nega-

tive but the classification model predicted it positives. FN is positive values which

the system has predicted negatively. Given Table 3.6 shows confusion matrix.
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3.11.1 Accuracy Measure

Accuracy is well-established and widely used evaluation measure for assessing ma-

chine learning algorithms performance. Accuracy can be defined the ratio of cor-

rectly predicted elements to the total number of the elements present in a training

set. Mathematically, accuracy measure can be calculated using the given formula

3.1.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

In order to compute the classification accuracy of our proposed software bugs

classification technique, we use the given accuracy measure formula 3.2.

Accuracy(%) =
number of accurate classified software bugs

total numebr of bugs/issues
∗ 100 (3.2)

3.11.2 Precision

Precision is another measure we use for evaluating the performance of our proposed

approach. Precision can be defined as the percentage of correctly classified bugs

and the total number of bugs/issues which was assigned to particular class or

category. To calculate precision we use a confusion matrix that contains both

positive and negative values.

Precision =
TP

TP + FP
(3.3)

3.11.3 Recall

Recall is one of the most widely used evaluation measure for classification pur-

poses. Recall can be defined is the ratio of correctly classified software bugs and

actual number of software bugs of particular type. Mathematically Recall can be

calculated as using the given formula 3.4.

Precision =
TP

TP + FN
(3.4)
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3.11.4 F-Measure

F-measure is one of the most widely used evaluation parameter for assessing the

performance and effectiveness of any machine learning algorithm. F-measure con-

siders both precision and recall by taking their harmonic mean. F-measure is

considered one of the most powerful and effective evaluation measure used for per-

formance evaluation of machine learning algorithms. F-measure can be calculated

using the given formula 3.5.

Precision =
2 ∗ Precision ∗Recall

Precision + Recall
(3.5)

3.12 Extraction of Textual Feature from Bug Re-

ports

In order to extract feature set against textual attributes, i.e. title, summary. To

extract these features from preprocessed bug’s reports we use term frequency and

inverse document frequency (TF-IDF) scheme. TF-IDF term weighting scheme

is used in majority of the software bug reports classification, bugs prioritization

techniques. Mathematically, TF-IDF can be represented using the given formula

3.6.

TF − IDFti,bj = TFti,bj ∗ (1 + log(
1 + B

1 + b(ti)
)) (3.6)

In the above formula B represents the total number of bug reports that are present

in the corpus or dataset, while ti is the total number of occurrence of certain term

in the specific bug report bj. While on the other hand (bt) is total number of issue

reports in which a specific term (ti) has occurred.
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3.13 Extraction of Categorical Features from Bug

Reports

Categorical attributes are integral part of any software bugs and can play a cru-

cial role in bugs classification and assignment process. In the existing literature

various approaches considered categorical features for bugs classification. In our

proposed technique we use categorical attributes for software bugs classification.

These categorical attributes are product, component, version, priority and severity.

To extract from categorical attributes of the bug report we use one hot encoding

scheme [58] which converts categorical features into binary vectors. This binary

vector of categorical attributes is used to train classification algorithm. Further-

more, the length of the binary vector contains the number of all possible values

present in the categorical attributes. In the feature extraction process of cate-

gorical terms we use term frequency and inverse document frequency (TF-IDF),

however, we apply TF-IDF on line level instead of applying it whole document.

This is called line-IDF and use two binary values, i.e. 0 and 1.

3.13.1 Challenges in using the Categorical Attributes of

the Bug Reports

Working and dealing with categorical variables is a quite challenging and time

consuming task. We would like to share some of the challenges we faced while

dealing with categorical variables. One of the main challenges dealing with the

categorical attributes is that not every classifier can be applied on the categorical

attributes. For instance, applying neural network (NN) or Convolutional neural

network (CNN) may not be feasible and its results will not be fruitful. Another

important challenge with categorical attributes is that it conveys less informa-

tion as compared to numerical values. For example, Most of the algorithms (or

ML libraries) produce better result with numerical variable. In python, library

like “sklearn” requires features in numerical arrays. Another major issue with

categorical attributes is that it requires encoding schemes like Onehot encoding
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or hamming encoder in order to convert it into vectors. We have used Onehot

encoding scheme To convert the categorical attributes into vectors.

3.14 Proposed Approach Diagram

Our proposed approach works in several steps. In initial step software bugs re-

ports are retrieved from Bugzilla and Google chromium bugs tracking system, in

the second step preprocessing is applied and textual and categorical features are

extracted. In the fourth step machine learning algorithms are applied for classi-

fying software bugs into different classes. in the last step classification results are

evaluated using four evaluation measures, such as F-measure, accuracy, precision

and Recall. Figure 3.1 depicts an overview diagram of our proposed approach for

bug reports classification.
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Figure 3.1: Methodology diagram



Chapter 4

Implementation and Results

4.1 Experimental Setup

Experiments were performed on bug’s reports datasets using machine learning

algorithm by implementing a comprehensive experimental setup. Experiments

were performed on machine having Intel core i5 processor with 2.5 GHz, with

installed main memory of 4 GB and Windows 7 operating system. All the im-

plementation and pre-processing of software bug reports were done using python

programming language and natural language processing toolkit (NLTK). We used

the open source API of WEKA tool in Python programming language, which con-

tains the implementation of all algorithms we used in this research work.

Our experimental analysis and evaluation consists of three main steps, i.e. datasets

selection and processing, feature extraction and applying machine learning algo-

rithms on pre-processed bug reports in order to classify software bugs in different

classes. We extracted feature set from bug reports dataset; the feature extraction

was done using Term Frequency-Inverse Domain Frequency (TF-IDF). TF-IDF is

widely used technique for feature extraction in classification problems. Features

are extracted on the basis of common occurrence of certain key words that appears

in bug reports. The obtained results are evaluated using four evaluation measures

that are F-measure, Precision, Recall and accuracy. We perform comparison of

our proposed approach with other techniques in the literature closely related to

49
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our approach. In the rest of this chapter we explain the obtained results of our

proposed techniques.

The process which we have performed for the classification of bugs is given below:

4.2 Dataset

The first step is dataset selection. We have selected two different datasets of

software bus reports that Firefox and Eclipse platform.

4.2.1 Firefox for Android Bugs

The Firefox for Android bugs dataset contains bug reports files against the different

versions of Firefox browser for smart phones. The dataset contains 20 thousand

reports filed in the Bugzilla bug tracking repository. We remove the duplicate

bugs during the retrieval process from the Bugzilla bug tracking system.

4.2.2 Eclipse Platform Bugs

The Second Dataset we use for evaluating our proposed approach is Eclipse plat-

form bug reports dataset, which also contains the same number of software bug

reports.

4.3 Labeling

As the classification requires respective categories against bugs, in the software

bug reports datasets we are using contains the respective categories. The dataset

which we have used for experimentation purpose is already labeled. In the dataset

some of the instances are unlabeled. In the pre-processing stage we have labeled

them the unlabeled instances by comparing with the feature set which we have

make from the bug reports. In order to make the datasets more consistent and
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uniform we are renaming the labels into five different labels. These labels are bugs,

non-bugs, logical bugs, graphical user interface bugs and enhancement bugs.

4.3.1 Binary Classification

For binary Classification we have re-named labels of all the instances of the

datasets (i.e. Firefox and Eclipse) into bugs and non-bugs. The dataset are

somehow like this: 4.1:

Figure 4.1: Binary classification labeling

4.3.2 Multi-Class Classification

For Multi-Class Classification we have re-named the label all the instances of

a datasets into four different classes such as 1) Logical bugs, 2) GUI bugs, 3)

Enhancement bugs and 4) Non bugs. The datasets are somehow like this: 4.2:

Figure 4.2: Multi class classification label
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4.4 Preprocessing of Bug Reports

First step in the experimentation and analysis phase of our proposed technique is

the preprocessing step. Initially we retrieved software bug reports from tracking

systems (BTS). After the Firefox and Eclipse dataset retrieval process from their

respective bug tracking repositories we applied standard natural language pro-

cessing techniques for preprocessing and cleaning of software bug reports dataset.

First we ordered all issue reports in ascending order using bug IDs. Then we

segment all the instances in all bug’s reports in sentence level. After the segmen-

tation step tokenization process is applied to tokenize software bug reports into

tokens. Once the tokenization process completes we remove stop words from the

bug reports. Stop words are those terms that occur frequently in text and have

no effect on the overall semantic of the text. However, we apply a stopping mech-

anism for removing stop words, for example we do not remove words like “does

not”, “not”, “cannot” etc. because these terms have special meaning in a bug

report. Stop word removal process is followed by feature set extraction process.

Features are extracted from bug reports based on different keywords that occur in

software bug reports. We use a taxonomic hierarchy for feature extraction. Term

Frequency-Inverse Domain Frequency (TF-IDF) is used to extract feature set for

five different classes. We use total of five classes for classifying software bug reports

which includes actual bugs and non-actual bug classes, the other three classes are

logical, GUI and enhancement bug reports classes. Main reason behind the use of

varying number of classes is to evaluate and investigate the impact of the classifier

performance and to suggest the number of classes which can be used to correctly

classify software bugs into different classes.

4.5 Preprocessing Steps

Before performing the classification we have to preprocess the textual data. There

are few parameters that needed to be cleaned form noise such as title of the bugs.
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The stop words removal and stemming is done on different parameters. Let’s

discuss it step by step.

4.5.1 Stop Words Removal

In English language the words like, “is, the, a, which, at, in etc.” is often found in

multiple sentences. Therefore, their removal is necessary to get the unique terms

from titles. To remove stop words from titles of bugs, we have to use the NLTK

library because it contains list of stop words.

4.5.2 Lemmatization

The stemming and lemmatization both techniques are used to reduce inflectional

forms and sometimes derivationally related forms of a word to a common base

form. However, there is some difference in these two techniques. Stemming usually

refers to a crude heuristic process that chops off the ends of words in the hope of

achieving this goal correctly most of the time, and often includes the removal of

derivational affixes. Lemmatization usually refers to doing things properly with

the use of a vocabulary and morphological analysis of words, normally aiming to

remove inflectional endings only and to return the base or dictionary form of a

word, which is known as the lemma. We have used the lemmatization technique

for reducing the words into its base form without altering it semantic or structure.

However, lemmatization requires a dictionary to be carried for deployment, while

stemming does not require any dictionary to be carried for the deployment purpose.

4.5.3 Noise Removal

Removing of noise from data is important because it can affect the accuracy of

classification. We have remove noise from different parameter (i.e. title, descrip-

tion and summary etc.) of a datasets. Therefore, we have removed all of these

unnecessary punctuations by using NLTK library.
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4.5.4 Vectorization

After performing preprocessing steps on te Firefox and Eclipse bug reports dataset,

we have used Term Frequency and Inverse Domain Frequency (TF-IDF) technique

to represent the textual attribute of our instances. In this technique we have

calculated the TF-IDF score for every word of a parameter. As the number of

words in parameter is vary in length so we have considered the average word per

instance of the datasets.

4.6 Classification

Generally, we have performed two different types of classification, i.e. Binary clas-

sification and multi-class classification. For both type of classification we have

evaluated different attributes of Firefox and Eclipse bug reports datasets such as:

1) Textual attributes, 2) Categorical attributes and combination of both cate-

gorical and textual attributes. For the classification we have used six different

Classifiers which are given below.

1. Support Vector Machine (SVM)

2. K-Nearest Neighbors (KNN)

3. Naive Bayes (NB)

4. Gaussian Naive Bayes (GB)

5. Decision Tree (DT)

6. Random forest (RF)
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4.7 Bug Reports Attribute Wise Experiments

We performed experiments using three different combinations of the bug reports

attributes. These attribute are textual, categorical and combination of both tex-

tual and categorical attributes. We develop three different classification models

for assessing the performance and effectiveness of our approach.

We have used stratified 10 fold cross validation, which is the extension of regular k-

fold cross validation but specifically for classification problems where rather than

the splits being completely random, the ratio between the target classes is the

same in each fold as it is in the full dataset. We repeated and run our experiments

for 5 times.

4.8 M1 Model: Classification Model using Bug

Textual Attributes

The first classification model only uses textual attributes of software bug reports

extracted from two datasets. The basic intuition behind the use of only textual

attributes of bug reports is to assess their significance in the classification and

prediction process. We use natural language processing technique to extract tex-

tual information related to bug title description and summary using TF-IDF. It is

evident from the literature review that textual attribute is an essential component

of any software bug reports. We report the performance of textual attributes in

following figure 4.3. Furthermore, the performance of the textual attribute on our

selected algorithms is evaluated using precision, F-measure, Recall and accuracy

evaluation measures.

4.8.1 Firefox and Eclipse Datasets Results on Model M1:

First we have evaluated the Firefox bug reports dataset and performed two type

of classification. I.e. binary classification which consists of actual software bugs
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class and non-bugs class. While multi classification contains four classes which

include GUI bugs, non-bugs, enhancement and logical bugs.

In binary classification we selected first two classes for classification, which are

actual bugs and non-bugs class. Furthermore, we experimented with three differ-

ent combinations of bug’s reports attributes. These combinations are categorical

attributes, textual attributes and both textual and categorical combined. Fig-

ure 4.3 depicts the results of different machine learning algorithms on the Firefox

dataset when textual attributes from the software bugs reports dataset are used

for classification. Figure 4.3 depict the classification results of textual attributes

of the software bugs, Support Vector Machine, K-NN and Decision trees algorithm

achieves better results as compared to Näıve Bayes, GB and Random Forest. SVM

attained 83% score in terms of F-measure. On the other hand, Random forest was

the poorly performing algorithm that produced less the 65% score in terms of F-

measure score. Gaussian Bayes is another algorithm that performed poorly when

only textual attributes of Firefox software bug reports is used for classification.

However, GB attained 67% F-measure score for classifying software issue reports

into binary classes (i.e. Actual bugs and non- bugs). In case of multi class classifi-

cation we have evaluated the performance of machine learning algorithms on only

textual attributes of the software bug reports. The basic reason behind the use of

more number of classes is to evaluate and suggest suitable number of classes that

can be used for bug reports classification. Figure 4.3 describes the obtained re-

sults of our six selected machine learning algorithms when only textual attributes

from the Firefox bugs reports dataset is used. From figure 4.3 it very clear and

obvious that most of the algorithms yielded varying results in terms of different

evaluation measures. For instance SVM achieved an F-score of 0.53, followed by

K-NN and RF with an F-score of 0.52 and 0.50 respectively. On the other hand

Näıve Bayes, GB and Decision Trees classifiers yielded very moderate results on

the evaluation measure (i.e. F-score). One of the main reasons behind the moder-

ate performance of our selected machine learning algorithms is the more number

of classes as compared to that of binary classification.



Result and Evaluation 57

Figure 4.3: binary classification and multi Classification results of Firefox and
Eclipse datasets using textual attributes

Eclipse platform is the second bug’s dataset we use for demonstrating the per-

formance of our proposed approach. We perform exactly the same experiments

on the eclipse dataset as we performed on the Firefox software bugs dataset. We

classify eclipse software bug reports using binary classification and multi classifica-

tion. The binary classification contains two classes which are actual software bugs

class and non-bugs class. While the multi classification contains four numbers of

classes, i.e. actual bugs, graphical user interface bugs, logical bugs and enhance-

ment or improvement related issues. Figure 4.3 portrays the performance of our

selected machine learning algorithm performance on the eclipse bugs dataset when

only textual attributes are used for binary and multi classification.

In the case of binary classification we classify software bugs into actual bug and

non-bug classes. Figure 4.3 shows the obtained results of machine learning algo-

rithm for binary classification. In the case of textual attributes of eclipse software

bugs reports support vector machine, K-nearest Neighbour, GB and decision tree

all obtains better results as compared Näıve Bayes and Random Forest. SVM and

K-NN were the stand out performers yielding an F-score of 0.78, 0.79, and 0.77
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respectively. In case of precision and recall SVM, KNN and decision tree obtained

better results as compared to the Näıve Bayes and Random Forest classifiers.

Furthermore, Näıve Bayes achieved relatively poor results on all the evaluation

measures as compared to the rest of classifiers. Näıve Bayes achieved F-score of

0.71 and accuracy score of 0.67. Although most of our selected classifiers achieved

better results except Näıve Bayes for binary classification on Eclipse dataset tex-

tual attributes.

Figure 4.3 also depicts the classification results of our six selected machine learning

algorithms for classifying software bugs reports in to different categories based on

the textual attributes of the bug reports. For multi classification we use four classes

for classifying software issues. In case of multi classification most of the classifiers

produced mixed results when textual attributes of the software bugs reports were

used. For instance, SVM, Näıve Bayes and GB produced F-score of 0.66, 0.67 and

0.67 respectively. While in case of accuracy SVM, K-NN, and Gaussian Bayes

performs better than random forest and decision tree that attained an accuracy

of 0.56 and 0.58 respectively.

4.9 M2 Model: Classification Model using Cat-

egorical Attributes

The second classification model is related to categorical attributes of the software

bug reports. We use several categorical attributes from software issue reports,

these categorical attributes are “product”, “Platform”, “priority”, “severity” and

“version” of reported software issues. Categorical attributes/features are extracted

from the bug reports and converted into binary vectors using “one hot encoding”

which is most widely and effective technique for encoding categorical features.

The basic intuition behind the use of only categorical features of bug reports is to

analyze the impact of categorical attributes in software issues reports classification

process. Categorical features are considered an integral part of any software bug

reports and it provides variety of information that can be beneficial in software
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issues classification process. We report the M2 model results in the following

figures. Which is evaluated using four performance evaluated measures, i.e. F-

measure, precision, Recall and accuracy.

In order to use the categorical attributes of software bug reports we first encode

the categorical attributes to binary vectors. One hot encoding scheme is used to

encode the categorical attributes of software bug reports into binary vectors.

4.9.1 Firefox and Eclipse Dataset Classification Results

From figure 4.4 it can be observed that support vector machine, KNN and deci-

sion tree algorithms performs better than näıve Bayes and Gaussian Bayes. SVM

has an F-score of 0.78, and then followed by KNN with 0.75 and decision trees

with 0.74. In case of accuracy SVM, KNN and DT performed better than the

rest of algorithms (i.e. näıve Bayes, Gaussian Bayes and Random forest). On

the other hand Näıve Bayes and Gaussian Bayes (GB) achieved similar F-score

of 0.58 each. Random Forest performed better than the Näıve Bayes and Gaus-

sian Bayes which produced an F-score of 0.61. The binary classification results

of categorical attributes are quite better as compared to multi class classification.

Hence, categorical features can be used in the classification process of software bug

reports. However, selection of appropriate categorical attributes and their classi-

fication performance can vary depending upon the dataset. Figure 4.4 also shows

the multi classification of only categorical attributes of firebox bug reports dataset.

We use classify the software bugs reports into four classes (non-bugs, logical bugs,

GUI bugs, and enhancement bugs) based on the categorical attributes. In case

of multi classification only SVM classifier achieved better results as compared to

the rest of the classifiers. SVM achieves an f-score 0.76, and then followed by

KNN with 0.51 F-score. Furthermore, SVM and KNN produced results between

0.520 to 0.691 in terms of accuracy, recall and precision. Näıve Bayes, GB, DT

and RF achieved poor results on all the evaluation parameters, the performance

of RF; GB achieves an F score of 0.32, 0.35 and 0.318 respectively. The same

was the case with other evaluation measures for GB, DT and RF classifier. Hence,
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Figure 4.4: Classification results for Firefox and Eclipse dataset using cate-
gorical attributes of software issue reports

the classifiers results indicates that using solely using the categorical attributes for

bugs reports classification is not good option and it does not yield effective results.

Two reasons are behind this poor performance of machine learning classifiers such

as more number of classes, less effectiveness of bug’s reports categorical attributes.

Hence, it will not be feasible to use the categorical features for classifying software

bug reports into different categories.

We performed the same experiment as we did on the Firefox bug reports dataset;

we extract categorical attributes of software bugs reports from eclipse platform

datasets and encode them using one hot encoding method. Figure 4.4 shows

the binary classification of categorical attributes of eclipse bugs reports dataset.

Here all the classifiers achieved moderate results on the eclipse bugs dataset. For

instance SVM achieved highest F-score of 0.60, followed by näıve and GB and

DT with 0.53, 0.56 and 0.566 respectively. In case of accuracy all the algorithms

achieved scores between 0.64 and 0.51. SVM produced 0.65 and 0.69 precision

and recall score. From the experimental analysis it is very clear that most of

the classifiers generated average results when only textual attributes of the bug’s
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reports were used. Bugs classification using only textual attributes of software bugs

reports is not much that effective , because software bug reports contains other

important attributes other than textual. Hence, by combing both textual and

categorical attributes can be much effective then using only textual or categorical

attributes of the bug reports.

Figure 4.4 shows the results of our selected classifiers on categorical attributes

for multi classification. Most of the algorithms perform poorly on categorical

attributes for multi classification. For instance the highest performing classifiers

were K-NN and Decision trees in terms of F-measure that was 0.34 and 0.33

respectively. The other most effective classifiers were Näıve Bayes and GB that

yielded an F-score of 0.30 and 0.25 respectively. This experimental result indicates

that using categorical attributes alone for bug’s reports classification is not a

feasible way and effective way due to different reasons. Categorical features do not

contain that much information and rich features that can be used for classification.

Although, categorical features are considered essential part of any bug report.

4.10 M3 Model: Classification Model using Tex-

tual and Categorical Attributes

Our third classification model makes use of both categorical and textual attributes

of software bug reports. In this model we use bug title, bug description and

summary from textual attributes and product name, priority, severity and other

attributes from the categorical fields of software issue reports. The main reason

behind the selection of both categorical and textual attributes is to analysis the

performance by combining these different attributes.
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4.10.1 Classification Results of Firefox and Eclipse Dataset

on M3 Model

Model M3 in our proposed approach make use of the both the categorical and tex-

tual attributes of the software bugs reports. The main reason behind combining

both the textual and categorical attributes of software bug reports is to evaluate

their effectiveness in the classification problem. In binary classification we clas-

sified Firefox and Eclipse dataset bug reports into two main classes, which are

actual bug class and non-bugs class. Figure 4.5 depicts the classification results

of software bug reports using both categorical and textual attributes of the bug

reports.

Figure 4.5 that shows the binary classification results of our employed machine

learning algorithms, most of the algorithms achieved significantly higher results in

terms of all the evaluation measures (i.e. precision, recall, accuracy and F- score)

we used for performance evaluation. For instance, SVM, KNN and decision tree

algorithms achieved an F-score of 0.84, 8.77 and 0.76. Then followed by random

forest and näıve Bayes which produced an F-score of 0.74, 0.73 respectively. The

only algorithm that performed slightly poor then the rest of classification algorithm

was Gaussian Bayes with an F-score of 0.69. In case of Precision, Recall and

Accuracy SVM, K-NN and Decision trees achieved the highest results. Among

these three algorithms SVM achieved the highest precision and accuracy of 0.85

and 0.84. The third best performing algorithm was KNN with 0.77 and 0.824

precision and accuracy.

Form the experimental results of using both the categorical and textual attributes

of bug reports, we observed that by combining the textual and categorical at-

tributes significantly Improves the performance of classification. There are several

reasons behind the effective results of classification in the use of both categori-

cal and textual attributes. Both the categorical and textual attributes are very

important for classifying software bug reports into different classes. Hence, us-

ing both categorical and textual attributes are the perfect candidates for binary

classification of software bugs reports. In model M3 we also performed the multi
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Figure 4.5: Textual and Categorical classification results on Firefox and
Eclipse bug reports datasets

classification of software bugs reports; in multi classification we classify software

bugs into four classes using four classes, such as logical bugs, GUI bugs and en-

hancement bugs. Figure 4.5 shows classification results of six different classifiers.

In multi classification process most of the classifiers performed well on the Firefox

dataset. However, their results were lower than that of the binary classification.

In Figure 4.5 results SVM, Näıve Bayes and Random Forest achieved an F-score

of 0.73, 0.65 and 0.67 respectively. Rest of the classifiers (i.e. K-NN, GB and

Decision trees) achieved an F-score between 0.62 and 0.56. In case of the precision

and recall support vector machine achieved the highest results of 0.78 and 0.79

respectively. In the multi classification Gaussian Bayes performed poorly in all

the evaluation measures.

Multi classification using both the categorical and textual attributes of Firefox

software bug reports achieved lower results as compared to the binary classifica-

tion. More number of classes can have impact on the overall performance of the

classification. another, important reason for the lower performance of multi clas-

sification than binary classification is that extracting class wise feature set from

textual attributes is very challenging task due to the nature of text in the bug

reports.
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Another dataset we use for evaluating our proposed approach is Eclipse platform

dataset. Figure 4.5 shows binary classification of eclipse bugs reports dataset.

Both textual and categorical attributes of bug reports are considered for classifying

the issues into two classes such as actual bugs and non-bugs. Most of the classifiers

performed well and yielded better results except Gaussian Bayes and Random

forest. For instance, support vector machine, KNN and decision tree obtained an

F-score of 0.84, 0.79 and 0.80 respectively. Näıve Bayes, GB and random forest

lower F-score (i.e. 0.74, 0.68 and 0.65) as compared to the rest of the classifiers. In

case of accuracy SVM, KNN Näıve Bayes and decision tree classifiers better results

as compared to Gaussian Bayes and random forest. In terms of the precision and

recall most of the classifiers achieved significantly high result except Gaussian

Bayes and random forest which scores precision of 0.65 and 0.68 and recall of 0.66

and 0.68.

Hence, the experimental results on eclipse dataset for binary classification with

both categorical and textual attributes of software bug reports, demonstrated that

all the classifiers achieved high performance on all the evaluation measures.

Figure 4.5 shows the attained results of the selected machine learning classification

algorithms for multi classification of the Eclipse bug reports dataset. We used four

number of classes for classifying Eclipse software bug reports, these classes are non-

bugs and three sub categories of actual bug’s class, that are logical bugs, GUI bugs

and enhancement related bugs. For multi classification KNN, Näıve Bayes and

SVM obtained highest results in terms of accuracy, precision, recall and F-score.

The F-score of these classifiers are 0.85, 0.71 and 0.75. SVM, KNN and näıve

Bayes recorded the highest accuracy of 0.88, 0.75 and 0.78 respectively. On the

other hand Gaussian Bayes, decision tree and random forest scored varying results

on all evaluation measures. For instance GB, DT and RF achieved F-score of 0.62,

0.65 and 0.6o respectively. The obtained results of classifiers on the categorical

and textual attributes of eclipse bugs indicates that using the combination of both

categorical and textual attributes of software bugs provides effective results as

compared to using these attributes alone.
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4.11 Class Wise Comparison

To evaluate our proposed mechanism of software bug reports classification, we

performed different types of experiments and evaluation techniques. For example,

we tested and evaluated our approach using varying number of classes, i.e. total

number of classes is 4, and we vary the number of classes during experiments from

2-4 and observed the behaviour and performance of selected classifiers on Firefox

and Eclipse bugs reports dataset. We develop 3 classification models based on the

categorical and textual attributes of the bug reports. Furthermore, the class wise

evaluation shows the number of classes that can yield better performance in terms

of accuracy, F-measure, precision and recall without degrading the classification

performance.

4.11.1 Classification Performance using Two Classes

We evaluate the number of classes and its impact on classification of software bugs

reports using machine learning algorithm. In model 1 we classify software bugs

into two classes that are actual bug’s class and non-bugs class. Actual bug’s class

contains those bugs that occurred within the software. While those classes which

does not directly affects the functionality of the software system are non-bugs.

Form experimental analysis performed on the two bug’s datasets (i.e. Firefox and

Eclipse platform) we observed that all the machine learning algorithms performed

effectively and efficiently on both Firefox and Eclipse datasets. We used different

combinations of categorical and textual attributes for classification, such as using

textual and categorical attribute separately and combining textual and categorical

attributes. The combination of textual and categorical attributes yielded better

results in terms of evaluation measures. Binary Classification results for textual,

categorical and combination of textual and categorical attributes of software bug

reports from both Firefox and Eclipse datasets is depicted in the following figures

4.6.
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Figure 4.6: Binary class Classification results of Firefox and Eclipse dataset
in binary classes

4.11.2 Multi class Classification Results using Four Classes

The basic intuition behind the use of varying number of classes is to evaluate

their performance and suitability for classification. The following figure shows

the obtained results for classification in terms of four evaluation measures such

as F-measure, Precision, recall and accuracy. However, we only report the F-

measure score in the graphs in order to make it more simple and readable. We

used four numbers of classes (i.e. actual bugs, logical, graphical user interface

and enhancement bugs) for classification. In model M3 we performed experiments

using textual and categorical attributes of the bug reports. We observed form

obtained results that when textual and categorical attributes were used combined

generates better results as compared to the use of textual and categorical sepa-

rately. The multi classification results of textual, categorical and combining the

textual and categorical attributes of software bug reports are shown in figures 4.7



Result and Evaluation 67

Figure 4.7: Multi class classification results on Firefox and Eclipse dataset

4.12 Algorithm Wise Comparison

In this work we performed experiments using six different machine learning algo-

rithms, such as Support Vector Machine, Näıve Bayes, Decision Trees, Random

Forest and Gaussian Bayes. We compare the performance of these classification

algorithms on two different software bug reports datasets (i.e. Firefox and Eclipse

bugs reports). We evaluate the performance and applicability of these six machines

learning in order to be used for software issue reports classification. The basic mo-

tivation behind the use of the six machine learning algorithms for software bug

reports classification is to evaluate the effectiveness and prediction performance

of the different machine learning algorithms. Most of the machine learning clas-

sification algorithms achieved betters results when we use textual and categorical

attributes of bug reports combined, for instance, support vector machine, random

forest and decision and Näıve Bayes were the best performing classifiers in terms of

precision, accuracy, recall and F-measure. However, when we used textual and cat-

egorical attributes separately, in such cases only support vector machine (SVM) is

the best performing machine learning algorithm in terms performance on Firebox
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Table 4.1: classification algorithms comparsion for binary classification on
Eclipse dataset

Classifiers name
Textual Categorical Textual & Categorical
Acc PR RE FM Acc PR RE FM Acc PR RE FM

SVM 0.882 0.898 0.852 0.814 0.636 0.646 0.696 0.59 0.856 0.862 0.856 0.844
KNN 0.818 0.856 0.818 0.812 0.516 0.51 0.516 0.498 0.802 0.854 0.802 0.792
Näıve Bayes 0.666 0.67 0.666 0.66 0.542 0.542 0.542 0.538 0.752 0.76 0.752 0.742
Gaussian Bayes 0.67 0.774 0.77 0.768 0.57 0.572 0.57 0.562 0.652 0.662 0.64 0.682
Decision tree 0.817 0.826 0.818 0.818 0.572 0.568 0.572 0.566 0.808 0.822 0.818 0.808
Random forest 0.754 0.756 0.754 0.748 0.53 0.498 0.5 0.492 0.808 0.68 0.678 0.65

Table 4.2: comparison of classifiers performance on Firefox dataset for binary
classification

Classifiers name
Textual Categorical Textual & Categorical
Acc PR RE FM Acc PR RE FM Acc PR RE FM

SVM 0.854 0.866 0.854 0.834 0.792 0.796 0.792 0.792 0.852 0.854 0.852 0.844
KNN 0.788 0.828 0.788 0.784 0.748 0.776 0.748 0.738 0.778 0.824 0.778 0.768
Näıve Bayes 0.671 0.652 0.662 0.652 0.592 0.598 0.592 0.586 0.66 0.664 0.66 0.652
Gaussian Bayes 0.776 0.576 0.676 0.676 0.596 0.602 0.596 0.592 0.576 0.578 0.576 0.572
Decision tree 0.782 0.792 0.782 0.778 0.728 0.738 0.728 0.728 0.766 0.774 0.766 0.762
Random forest 0.568 0.568 0.568 0.566 0.592 0.68 0.592 0.588 0.666 0.671 0.665 0.676

Table 4.3: comparison of classifiers performance on Eclipse dataset for multi-
class classification

Classifiers name
Textual Categorical Textual & Categorical
ACC PR RE FM ACC PR RE FM ACC PR RE FM

SVM 0.682 0.576 0.672 0.65 0.264 0.24 0.264 0.2 0.882 0.876 0.882 0.852
KNN 0.64 0.626 0.64 0.604 0.322 0.344 0.322 0.298 0.75 0.728 0.75 0.702
Näıve Bayes 0.596 0.588 0.616 0.674 0.27 0.276 0.27 0.242 0.784 0.786 0.784 0.754
Gaussian Bayes 0.618 0.612 0.618 0.639 0.3 0.308 0.3 0.288 0.626 0.618 0.626 0.606
Decision tree 0.564 0.55 0.564 0.55 0.324 0.34 0.324 0.312 0.652 0.64 0.652 0.638
Random forest 0.59 0.588 0.59 0.536 0.246 0.266 0.246 0.22 0.608 0.616 0.608 0.6

Table 4.4: classifier performance on Firefox dataset for multi classification

Classifiers name
Textual Categorical Textual & Categorical

Acc PR RE FM Acc PR RE FM Acc PR RE FM
SVM 0.576 0.576 0.576 0.516 0.608 0.698 0.608 0.67 0.729 0.786 0.79 0.738
KNN 0.552 0.53 0.552 0.522 0.536 0.526 0.536 0.51 0.658 0.636 0.658 0.624
Näıve Bayes 0.404 0.42 0.44 0.388 0.322 0.318 0.322 0.278 0.694 0.696 0.694 0.658
Gaussian Bayes 0.318 0.316 0.318 0.304 0.326 0.32 0.326 0.314 0.53 0.526 0.63 0.514
Decision tree 0.496 0.484 0.496 0.482 0.478 0.466 0.478 0.464 0.576 0.558 0.576 0.56
Random forest 0.506 0.504 0.506 0.508 0.318 0.308 0.318 0.268 0.61 0.612 0.61 0.674

and Eclipse bugs reports dataset. The following table 4.1 1and 4.2 depicts the de-

tail performance comparison of machine learning classifiers for eclipse and Firefox

dataset for binary classification. Table 4.3 and 4.4 shows the detail performance

of the machine learning algorithms we used in this work. It also compares the

results of the classifiers for Eclipse and Firefox dataset. Moreover, these results

are based on multi class classification.
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4.13 Attributes Wise Performance Comparison

In our work we have also performed attribute wise comparison of software bug

reports. The basic intuition behind attributes wise comparison is to evaluate the

performance of different bug report attributes that can help in achieving better

performance and accurate results in bug reports classification process. We per-

formed experiment on different combinations of our selected attributes (i.e. title,

description, summary, expert comments, severity, priority, product, version and

product). In order to determine the best and suitable software bug reports that

can yield better performance results we have applied a wrapper (i.e. forward selec-

tion) subset evaluation and selection technique. The basic intuition behind the use

of wrapper technique is to determine the best performing attributes (i.e. textual

and categorical) for the software issue reports classification and training.

In order to identify the effective subset attributes we used the wrapper method

for subset evaluation. We used the classifier subset evl to apply wrapper method

for the selection of effective set of attributes from the list of attributes. Subset

evaluation can be performed manually as well. However, manual comparison and

creating subsets is time consuming task and also human errors and bias can have

an impact on the outcomes

4.13.1 Textual Attributes Wise Comparison

The first combination we used in our comparison consists of the title, summary and

comments attributes of software issue reports. F-score is used as a performance

evaluation measure. Support vector machine (SVM) is used in the experimentation

and performance evaluation process. Figure 4.8 shows the obtained results of

textual attributes. From figure 4.8 it is very clear that title and summary attributes

performed better then expert comment attribute of the software issue reports. For

instance, title and summary attributes both achieved 0.74 and 0.76 F-score on

both the Firefox and Eclipse datasets. On the other hand the worst performing

attribute was “comments or expert comments” that yielded an F-score of 0.51 and

0.48 on Firefox and Eclipse datasets respectively.
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Figure 4.8: Results for textual attributes comparison

Table 4.5: classifier performance on Firefox dataset for multi classification

S.No Subset Complete set
1. Title Title
2. Summary Summary
3. Comments

4.13.2 Performance of Textual Attributes using Wrapper

Technique

In order to evaluate and determine the best performing textual attributes of our

selected textual attributes from software bug reports. For this purpose we ap-

plied the wrapping technique that determines the best possible subset from all

the features and gives its results. the wrapper technique selected the following

subset from the complete. Figure 4.9 depicts the textual attributes performance

after applying the wrapper subset evaluation technique. Figure 4.9 depicts the

performance of the textual attributes that were selected as the best performing

attributes from the set of textual attributes we are using in this work. The wrap-

per technique selected title and summary from the textual attributes of software
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Figure 4.9: Results for textual attributes comparison

bug reports. We used support vector machine as performance evaluator. The

subset features yielded better results as compared to the complete list of textual

attributes used in experiments. Subset of attributes yielded an F-score of 0.83 and

0.84 respectively for Firefox and Eclipse dataset. On the other hand side complete

set of our selected attributes also yielded better results (i.e. 0.77 and 0.075) for

Firefox and Eclipse dataset. Hence, by using the wrapper technique the results

were improved significantly as compared to the results when all of the selected

attributes were used for classification.

4.14 Categorical Attribute’s Performance Com-

parison

We selected all the attributes from categorical category (i.e. severity, priority,

product, version and platform) of software issue reports. Most of the categorical

attributes obtained lower F-score as compared to textual attributes of software

issue reports. For instance, the best performing categorical attribute was severity,
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product and priority that yielded an F-score of 0.61, 0.58 and 0.62 respectively on

Firefox and Eclipse datasets. Version and platform attributes performed poorly

in terms of F-score. Moreover, figure 4.10 results also indicates that it only us-

ing categorical attributes of bug reports is not suitable for classification purpose.

However, combining categorical and textual for issue reports classification, it gives

better performance and classification results as compared to only categorical at-

tributes.

Figure 4.10: Results for software categorical attributes after applying wrap-
ping method

4.14.1 Categorical Attributes Performance after Applying

Wrapper Technique

We also applied the wrapping technique on the categorical attributes of software

bug reports in order to determine the best performing categorical attributes from

the list of all the categorical attributes we used in our research work. The wrapper

technique selected the following subset from the complete. Figure 4.11 sows the

obtained results terms of F-score when wrapper technique was applied to only



Result and Evaluation 73

Table 4.6: classifier performance on Firefox dataset for multi classification

S.No Subset Complete set
1. Severity Severity
2. Priority Priority
3. product Product
4. version
5. Platform

categorical attributes. The wrapping select only severity, priority and product at-

tribute form the list of all five categorical attributes we have used in our research

work. From the obtained results it’s very obvious and clear that by applying the

wrapper technique for subset evaluation generated improved results as compared

to the results obtained by employing all the categorical attributes. Severity and

priority attributes were the best performing attributes. Subset of categorical at-

tributes attained an F-score of 0.72 and 0.71 respectively for Firefox and Eclipse

dataset as compared to complete set of attributes that generated an F-score of

0.67 on Firefox dataset, while on Eclipse dataset it was 0.65.

Figure 4.11: categorical attributes performance after applying wrapper tech-
nique
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4.15 Textual and Categorical Attributes Perfor-

mance Comparison

This Combination consists of all the selected software bug report attributes that

we have used in the previous combinations. In combination we combined all the

selected attributes from the both categorical and textual categories of software

issue reports. This combination consists of different software issue report at-

tributes such as title, summary, comments, severity, priority, product, platform

and version. Figure 4.12 depicts the experimental results of the of bot textual and

categorical attributes of software issue reports using support vector machine. In

Figure 4.12 attributes like title, summary, severity and priority achieved F-score

between 0.66 and 0.81 on Firefox and Eclipse datasets respectively. Version and

platform attributes from the categorical attributes achieved moderate F-score of

0.65 and 0.68 respectively. hence, these performance results indicates that using

suitable number of textual and categorical attributes can significantly improves

the performance and classification of software bug reports into different classes

and categories.

Figure 4.12: Results for textual and categorical attributes
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Table 4.7: classifier performance on Firefox dataset for multi classification

S.No Subset Complete set
1. Severity Severity
2. Priority Priority
3. product Product
4. Title Version
5. Summary Platform
6. Title
7. Summary
8. Platform

4.15.1 Textual and Categorical Attributes Performance af-

ter Applying Wrapper Technique

We also performed the comparison of all the selected textual and categorical at-

tributes issues reports we used in this research work. In order to compare and

determine the best performing attributes in the classification process, we applied

the wrapper technique on all the bug reports attributes. Figure 4.13 depicts the

results of subset attributes after applying wrapper technique. The wrapper tech-

nique selected four best performing attributes that yielded better results in terms

of F-score while using support vector machine as classifier. These attributes are

bug title, summary from textual category, severity and priority from categori-

cal category. Subset of features from both the categorical and textual attributes

category obtained an F-score of 0.841 and 0.847 for Firefox and Eclipse datasets

respectively. While the complete set of attributes produced an F-score of 0.832

and 0.824 on both the Eclipse and Firefox datasets respectively. From these exper-

imental results after applying wrapper technique we observed that when textual

and categorical attributes are combined for issue reports classification, it generates

better results as compared to using textual and categorical attributes separately.

4.16 Analysis and Discussion

In this section we present the detail analysis of results obtained by our proposed

approach. We also answer the research questions that we have formulated in the
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Figure 4.13: Textual and categorical attributes performance after applying
wrapper technique.

first chapter of this thesis document. In this work we use bug reports from two

software bug tracking systems datasets (i.e. Firefox and eclipse). We applied six

machine learning algorithms on textual, categorical attributes of software bugs

reports. most of the classifiers used in this work yielded better results on binary

classification as compared two multi classifications when textual and categorical

attributes of software bugs used separately for classification. However, when both

the categorical and textual attributes are used combined its yields significant re-

sults. Furthermore, most of the classifiers achieved better results by combining

textual and categorical attributes of software bug reports.

RQ1: what is impact of using only textual attributes and using the combination

of both textual and categorical attributes on bug’s classification?

To answer research question two we have analyzed the impact and behavior of

both the textual and categorical attributes of the bug reports for classification.

Textual features are one of the most important and rich attributes that describes

the occurrence of bug in much details. Textual attributes provides verity of in-

formation about a particular bug report. However, sometimes the extraction of
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meaningful from the free text is a challenging task due to the varying information

present in the bug’s reports. We experimented with both textual and categorical

attributes and analyzed their impact and significance in bug’s classification pro-

cess. The presence of textual and categorical attributes in bug’s reports plays an

important role in the classification process. We used both the textual and cate-

gorical attributes of the software bugs reports our classification approach. From

the experimental results we concluded that by using both the categorical and tex-

tual attributes of Firefox and Eclipse bug’s reports. Moreover, all the classifiers

achieved the highest results on using categorical and textual attributes as com-

pared to separately using these attributes. For instance, using both categorical

and textual attributes for classification resulted in highest F-score of 0.88 and 0.85

respectively in binary as well as multi classification of software bugs reports.

RQ2: what is the suitable number of classes for classifying software issue reports?

The proper and suitable selection of classes for classification of software bugs

is a challenging and critical task; we use varying number of classes in order to

determine the accurate number of classes that can be used for classification. We

demonstrated the performance of our proposed approach using binary and multi

classes. The number of multi classes is kept at four, which are non-bugs, logical

bugs, GUI bugs and enhancement bugs. From the experimental results we observed

a slight degradation in the performance of the entire classifiers when the number of

classes was increased from two to four. However, when we selected only categorical

attributes of the bug’s reports their results were significantly poor as compared

to that of using both categorical and textual attributes. However, in case of the

binary classification categorical attributes produced better results as compared to

multi classification.

RQ 3: what is the impact of machine learning algorithms in the classification

process?

In this work we have performed bug reports classification using six machine learn-

ing algorithms (i.e. SVM, KNN, NB, GB, DT and RF). Most of the classifiers

achieved better classification results except random forest and Gaussian näıve
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Bayes. SVM, KNN and decision tree were the highest performing algorithms that

produced better results on both the datasets. On the other hand the worst per-

forming algorithm was Gaussian näıve Bayes which consistently performed poorly

on both Eclipse and Firefox datasets

RQ4: what are the most effective textual and categorical attributes of software

issue reports that can yield better classification results?

In order to answer to research question five we have applied a wrapper technique

that results in a subset of features set that performs better as compared to the

complete of feature set that has been used in this research work. We applied the

feature subset selection technique on both the textual and categorical attributes of

bug reports. We observed from the experimental results that by applying wrapper

technique the classification performance can be improved up to some extent. In

our case wrapper technique selected a subset of features consisting of bug title,

summary, severity and priority that resulted in better performance in terms of

F-score on Firefox and Eclipse datasets.

4.17 Comparison with Existing Approaches

We also compare the performance of our approach with 4 existing techniques in the

literature review by Sarkar et al [43], Kukkar and Mohana [38], Otoom et al.[43].

Our approach achieved better results in terms of accuracy and F-score against the

proposed approach of Sarkar et al [43]. However, Sarkar et al [43] used a close

source dataset for their evaluation. The proposed approach used total of 8 at-

tributes, in which two attributes were from textual category wile 6 attributes were

the categorical attributes of the bug reports. While, [42] used only two classes for

classifying software issues into two classes which are corrective class and perfective

class. Corrective class represents the actual software bugs while perfective class

represents enhancement related issues. The dataset used by [42] was obtained

from bugzilla bugs tracking repository. On the other side the authors in [38] clas-

sified bugs reports into two main classes (i.e. bugs and non- bugs). Moreover, our

proposed approached achieved better recall than Kukkar and Mohana [38] on the
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Table 4.8: Comparison with existing approaches

Approach Accuracy Precision Recall F-Measure
Otoom et al [42] 0.93 0,83 0.85 0.83
Sarkar et al [43] 0.79 0.78 0.79 0.78
kukkar [38] Nill 0.92 0.54 0.68
Proposed Approach 0.88 0.87 0.86 0.85

same Firefox dataset. Following table shows a comparison of our proposed ap-

proach against the existing approaches in the literature. The table 4.5 shows the

comparison of our proposed approach against the two mostly relevant approaches

in the literature review conducted in chapter two of this thesis. For the above ta-

ble it very clear that our proposed approach generated better classification results

as compared to the two existing approaches. Although, the approach presented

by Otoom et al [42] obtained better accuracy from our approach. However, the

proposed approach used only two classes for classifying for software issue reports..

Furthermore, the dataset used in [42] also consists of Firefox bug reports, and

it used title, summary and description attributes form textual category, product,

platform and priority attributes were selected from the categorical attributes cate-

gory. However, the number of instances in the dataset was less than the dataset we

used in our experiments. On the other hand in comparison with [43] our proposed

completely outperformed the existing approach terms of accuracy, precision. And

recall. Moreover, Kukkar and Mohana [38] used the same dataset (i.e. Firefox)

what we have used for experiment and we have achieved better recall.
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Conclusion and Future Work

This section will provide the conclusion of our research work and limitations for

the future work.

5.1 Conclusion

In this thesis we proposed a mechanism for classifying software bug’s reports into

different classes and categories using the categorical and textual attributes from

issue reports. due to the exponential number of bugs reported on daily basis in

different open source bugs tracking systems like Bugzilla and eclipse. Due to the

huge number of the bugs reported on daily basis it is infeasible to classify and

triage software bug’s reports manually into different classes and categories. In lit-

erature various approaches and techniques have been proposed for software issue

reports classification and triaging. Most of the existing approaches use several

attributes of the software bugs reports for classification. For instance, one of the

most widely technique is to use the textual attributes of the bug report and apply

classification algorithm on them. Some existing approaches have used both the

categorical and textual attributes of the software bugs reports in order to effec-

tively classify software bugs. However, still the existing approaches suffer due to

several limitations.

In this work we proposed a software bug’s issues classification technique using the

80
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categorical and textual attributes of software bugs reports. We extract feature set

from the textual and attributes of software issue reports based on the common

occurrence of certain keywords. We also use categorical features of software bug

reports in the classification process. We use categorical attributes like product,

version, priority and severity in our approach in order to classify software bug re-

ports into different classes. Such as actual bug’s class, non-bugs class, logical, GUI

and enhancement related bug classes. The basic intuition behind the use of cat-

egorical and textual attributes is to evaluate their performance and effectiveness

in the classification process. We classify bugs into two different combinations of

classes, such as actual bugs and non-bugs logical bugs, non-bugs, and enhancement

class. We also performed subset selection of features that yields better results as

compared to complete set of feature we used for issue reports classification.

Experiments were performed based on three models, model M1 uses only the

textual attributes of bug reports for classification, while model M2 considers cate-

gorical attributes of bug reports. Model M3 employs both textual and categorical

attributes of software bug reports. We used six machine learning classification

algorithms for classifying software bugs into different classes and categories, these

classifiers are support vector machine (SVM), K nearest Neighbour (KNN), Näıve

Bayes (NB), Gaussian näıve Bayes (GB), Decision tree (DT) and random for-

est (RF). Four different evaluation measures (i.e. Accuracy, precision, recall and

F-score) are applied for evaluating the performance of our proposed approach.

Furthermore, the performance of our proposed approach was demonstrated on

widely used open source datasets obtained from Bugzilla and Eclipse bugs track-

ing systems. We used the Weka API in python for implementing our proposed

technique. We also assessed and evaluated the performance of different categori-

cal and textual attributes of issue reports by using several combinations of textual

and categorical attributes in the experimentation.

Most of the machine learning algorithms achieved significant results on both Fire-

fox and eclipse datasets. For instance, SVM, KNN and DT achieved the highest

results in between 0.88, 0.86 and 0.84 in terms of F-score when both the categorical

and textual attributes of the software bugs reports were used in the experiments.

Apart from, other classifiers also yielded better results except Gaussian näıve Bayes
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which consistently achieved poor results on both Firefox and Eclipse dataset. in

case of categorical bug attributes did not yielded better results in both binary

and multiclass classification when they were used separately. However, when we

combined the categorical and textual attributes they generated higher results.

Apart from this we used varying number of classes in order to investigate the

accurate number of classes that can be used for software bugs reports classifica-

tion. from the experimental analysis we observed that both binary and multiclass

classification achieved better results when the categorical and textual attributes

were used combined. Hence, it means that by using both appropriate textual and

categorical attributes can lead to better classification results when the number of

the classes kept at minimum of four.

5.2 Future Work:

Software bugs reports classification and triaging is important activity in any soft-

ware development and engineering environment. In this work we performed bugs

reports classification on two bug’s datasets (i. e. Firefox and Eclipse dataset). We

applied six machine learning algorithms on Firefox and eclipse dataset in order to

classify software bugs into different categories. In future we aim to classify soft-

ware bugs reports using Deep learning algorithms which are considered one of the

most powerful classifiers. Although a few approaches have applied deep learning

for bugs triaging, however, they have only considered the textual attributes of

software bugs reports, we aim to apply deep learning algorithms on both textual

and categorical attributes of software issue reports. We also aim to consider other

problems related to software bug reports triaging and classification domain, some

of the problems and issues that can be considered for further research work cold

start problem, bugs fix time and analysis, developer weight analysis and software

bug prioritization. Another important direction in the classification and triag-

ing process would be to consider all the fields from software bug reports and to

perform feature selection on tem, and ten to classify software bugs based on the
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feature selection in order to identify the best and suitable features or attributes

that helps in bug reports classification process.
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bug or an enhancement? a text-based approach to classify change requests,”

2008.

[16] J. H. S. C. K. D. Lo, H. Cheng and C., “Classification of software behaviors for

failure detection: A discriminative pattern mining approach,” in Proceedings

of 136 N. K. Nagwani, S. Verma.

[17] D. G. G. Bougie and M., “A. storey, a comparative exploration of freebsd

bug lifetimes,” in 7th IEEE International Working Conference on Mining

Software Repositories,, vol. 65, no. 8, p. 106–109., 2010.
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